#### **SWIM and Horizon 2020 Support Mechanism**

Working for a Sustainable Mediterranean, Caring for our Future

## Data Management for River Basin Management Planning

Presented by:

Mr. Eric MINO, Director EMWIS Technical Unit

REG-5: 2nd Regional on-site training on Decentralized Water Management 17th – 18th April 2018, Vienna, Austria

This Project is funded by the European Union





























#### Overview of the presentation

**Data needs for Integrated Water Resources Management** 

**Examples from EU twinning projects:** 

- Sebou river basin
- Algerois river basin

**Breakout sessions** 





#### **Knowledge for water management**

## **IWRM** planning cycles

Data needs at Local level (e.g. river basin)
Every 6 years for the WFD

# National and international reporting

Upper level helps defining data/indicators need











#### SEIS - H2020 core water indicators

Policy objective: 

Assess inland water pollution to the Mediterranean sea

| Name                                                                                                                                                                                                                                                              | Geographical scope            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| <ul><li>3.1: Share of total, urban and rural population with access to an improved (ISS) sanitation system</li><li>3.2: Proportion of population using safely managed sanitation services (SMSS), including a hand-washing facility with water and soap</li></ul> | Coastal watersheds & national |
| 4.1: Municipal wastewater collected and wastewater treated                                                                                                                                                                                                        | Coastal watersheds & national |
| 4.2: Direct use of treated municipal wastewater                                                                                                                                                                                                                   | National                      |
| 4.3 Release of nutrients from municipal effluents (BOD, N, P)                                                                                                                                                                                                     | Coastal watersheds            |
| Nutrient concentrations in transitional, coastal and marine waters                                                                                                                                                                                                |                               |

#### Challenges:

- Data available at national level (MDG requirement) for most countries
- Definition updated to fit with SDG





#### SEIS - H2020 additional water indicators

Policy objective: 

Assess water stress

#### Name

Change in water-use efficiency over time (SDG 6.4.1)

Exploitation index of renewable natural resources (MSSD 2.12)

Water Exploitation Index+ (EEA CSI 018)

Level of water stress - freshwater withdrawal as a proportion of available freshwater resources (SDG 6.4.2, SCP 2.1)

#### Challenges:

Common definitions

Data availability and collection





## SDG water indicators (1/2)

| Targets                                                                                                                                                                                                                                                  | Indicator methodologies         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 6.1 By 2030, achieve universal and equitable access to safe and affordable drinking water for all                                                                                                                                                        | 6.1.1 on drinking water.        |
| 6.2 By 2030, achieve access to adequate and equitable sanitation and hygiene for all and end open defecation, paying special attention to the needs of women and girls and those in vulnerable situations                                                | 6.2.1 on sanitation and hygiene |
| 6.3 By 2030, improve water quality by reducing pollution, eliminating dumping and minimizing release of hazardous chemicals and materials, halving the proportion of untreated wastewater and substantially increasing recycling and safe reuse globally |                                 |
| 6.4 By 2030, substantially increase water-use efficiency across all sectors and ensure sustainable withdrawals and supply of freshwater to address water scarcity and substantially reduce the number of people suffering from water scarcity            |                                 |





## SDG water indicators (2 / 2)

| Targets                                                             | Indicator methodologies            |        |                      |                 |           |
|---------------------------------------------------------------------|------------------------------------|--------|----------------------|-----------------|-----------|
| 6.5 By 2030, implement integrated water resources management        | 6.5.1                              | on     | integrated           | water           | resources |
| at all levels, including through transboundary cooperation as       | management.                        |        |                      |                 |           |
| appropriate                                                         | 6.5.2 on transboundary cooperation |        |                      |                 | <u>1</u>  |
| 6.6 By 2020, protect and restore water-related ecosystems,          | <u>6.6.1 o</u>                     | n wat  | er-related eco       | <u>osystems</u> |           |
| including mountains, forests, wetlands, rivers, aquifers and lakes  |                                    |        |                      |                 |           |
| 6.a By 2030, expand international cooperation and capacity-         | 6.a.1 o                            | n inte | rnational coo        | peration        |           |
| building support to developing countries in water- and sanitation-  |                                    |        |                      |                 |           |
| related activities and programmes, including water harvesting,      |                                    |        |                      |                 |           |
| desalination, water efficiency, wastewater treatment, recycling and |                                    |        |                      |                 |           |
| reuse technologies                                                  |                                    |        |                      |                 |           |
| 6.b Support and strengthen the participation of local communities   | 6.b.1 o                            | n stak | <u>eholder parti</u> | <u>cipation</u> |           |
| in improving water and sanitation management                        |                                    |        |                      |                 |           |
|                                                                     |                                    |        |                      |                 |           |





#### Typical content of River Basin Management Plan (RBMP)

- Characterisation: river basin context
- Significant pressures and impacts of human activities
- Protected areas
- Status of water resources and monitoring networks
- Environmental objectives (if any)
- Economic analysis
- Programme of measures (i.e. action plan)
- Public information & consultation
- Competent authorities (i.e. responsibilities/stakeholders)





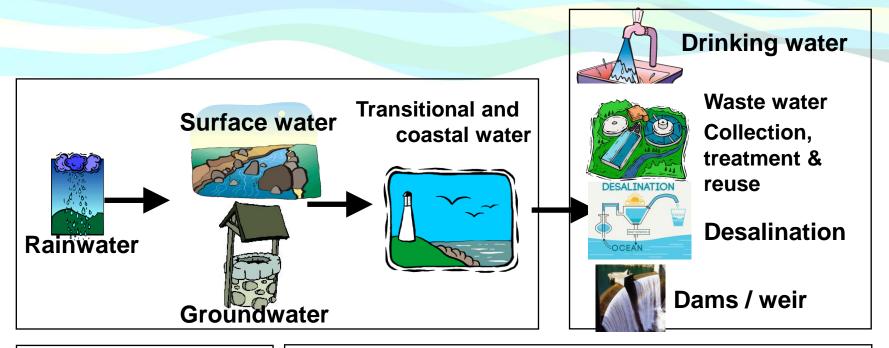
### Participatory approach

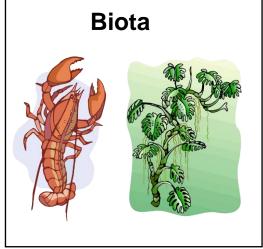
## Active participation

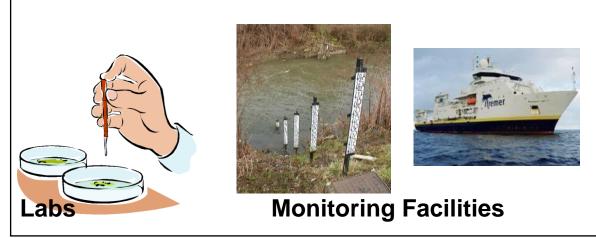
(e.g. round tables, focus groups)

#### Consultation

(e.g. surveys, discussions)


#### **Information**


(web sites, maps, newsletters, posters, etc.)






#### Data management: Thematic Scope (resources)























Collection Data production

Storage, archiving processing and valorization

Dissemination

Common methods, Reference datasets

#### **Quality management**

#### Data flow reverse engineering

From information dissemination .....

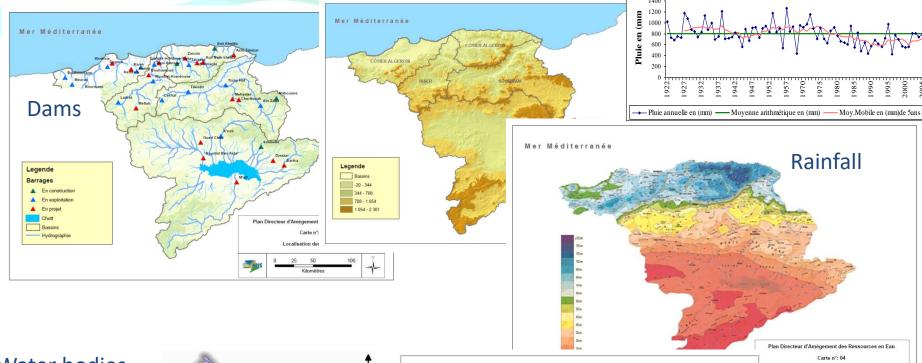
To data produced and <u>available for reuse</u>

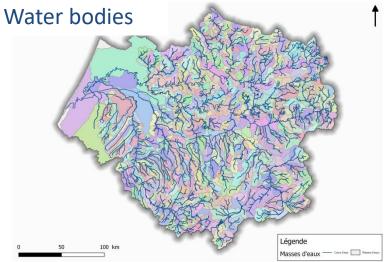
Or not!

- → Proxy solutions
- → planning actions to improve knowledge (measures)



#### Data for IWRM planning: Characterisation


#### Overview of the basin characteristics and main challenges


- Hydrographic network with river basins delineation
- Administrative management units (regions, provinces, cities, ...)
- Climate (e.g. rainfall, temperature), bio-climatic regions, trends
- Topography (DEM, slopes)
- Hydrogeology
- Water infrastructures (e.g. dams, desalination, WWTP, transfers)
- Water bodies (surface and ground water)
- Soil and geology
- Wetlands
- Land use and trends
- Population breakdown and long term trends
- Main industries
- Agriculture
- **Risks** (e.g. floods)

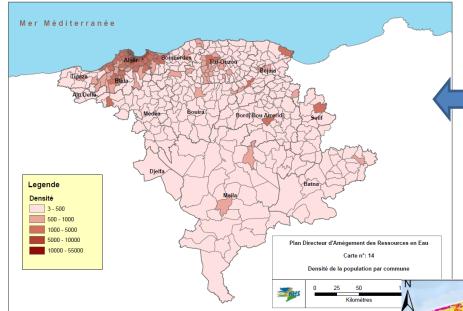




### **Characterisation: Examples**





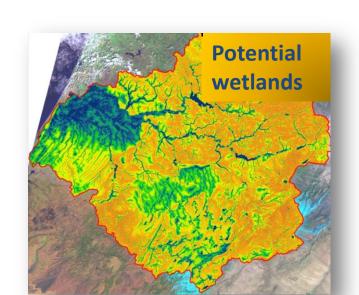


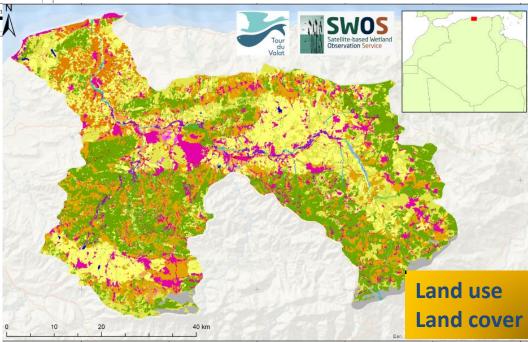



Pluviométrie moyenne interannuelle (1965-2002, source ANRH)

#### Characterisation

### Example (2/2)

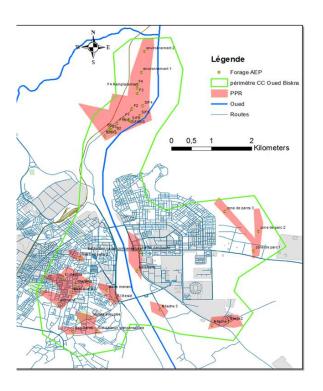




Population by administrative units

Needs to be converted by river basin

Earth observation can provide valuable data








#### Data for IWRM planning:

#### **Protected areas**

- Drinking water abstraction protection zones
- Bathing/recreational areas
- Wetlands (e.g. RAMSAR convention)
- Natural parks (habitat, species protection)
- Vulnerable / sensitive areas





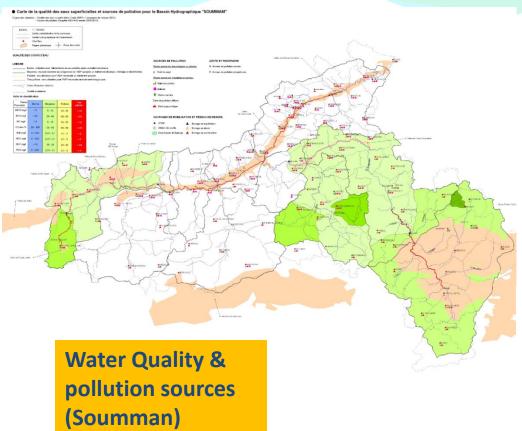


#### Focus on data for IWRM planning: Pressures

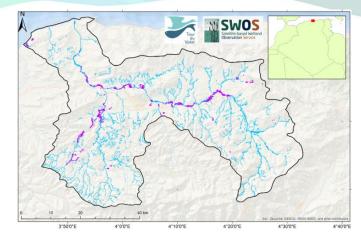
- Waste water discharge
- Diffuse pollution
- Landfills
- Polluted soils
- Sectoral water abstraction
  - potable,
  - irrigation,
  - industry
- Hydromorphology alterations (e.g. dams, dikes, weirs, gravel extraction, channelling)



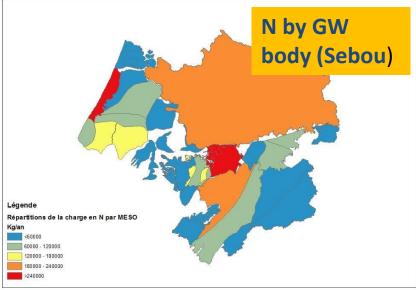



## Focus on data for IWRM planning: Monitoring

- Monitoring network (stations location, characteristics)
  - Surface water quality (rivers, lakes, reservoirs)
  - Hydrology
  - Reservoirs quantity
  - Groundwater quality (parameters)
  - Groundwater levels
- Definition of status
  - For each type of "water body",
  - Combining different parameters
- Monitoring results
  - Time series for each parameter
  - Global status of "water bodies"







## **Pressures & monitoring**

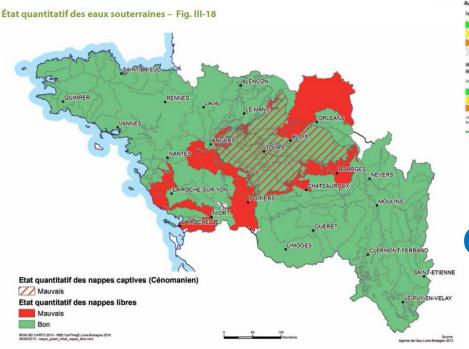


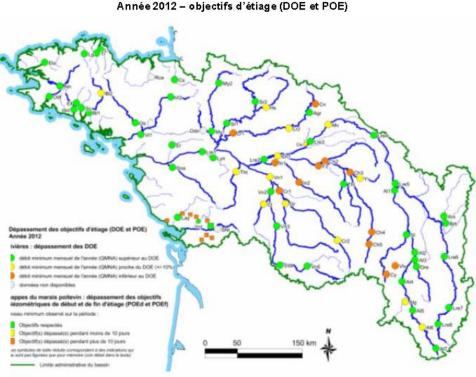
## Examples (1/2)











## **Pressures & monitoring**

## Examples (2/2)

#### **Surface water flows:**

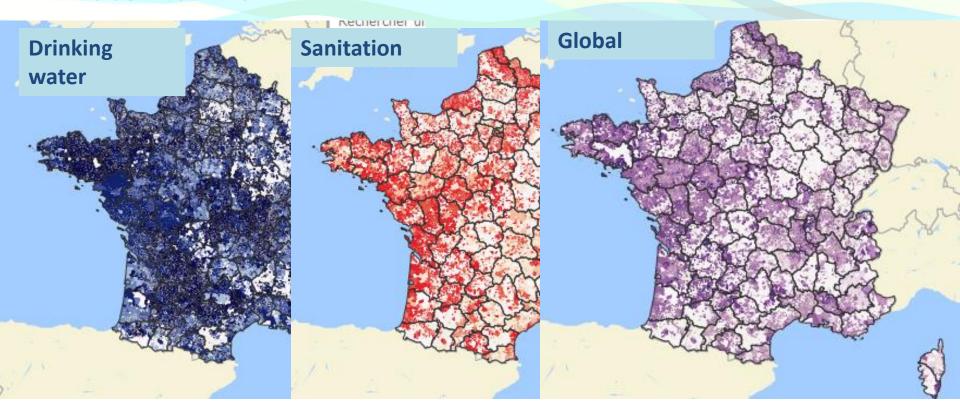
(e.g. Sebou eflows: 1-6 m/s)

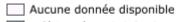




#### **Ground water levels**




## Data for IWRM planning: Economic analysis


- → Cost recovery→ Cost-benefits analysis
- Water services tariffs
- Water abstraction fees
- Waste water discharge fees
- Infrastructures costs
- Monitoring and data management costs
- Economic activities (incl. social impacts)
- Cost of Programme of Measures





#### Water tariffs





- Inférieur à 1,50 € / m³
- 1,50 à 1,80 € / m3
- 1,80 à 2 € / m³
- 2 à 2,30 € / m³
- Supérieur à 2,30 € / m³

- Aucune donnée disponible
- Inférieur à 1,50 € / m³
- \_\_\_ 1,50 à 1,80 € / m³
- 1,80 à 2 € / m3
- 2 à 2,30 € / m³
- Supérieur à 2,30 € / m3

- Aucune donnée disponible
- Inférieur à 3 € / m3
- 3 à 4 € / m³
- 4 à 5 € / m<sup>3</sup>
- 5à6€/m³



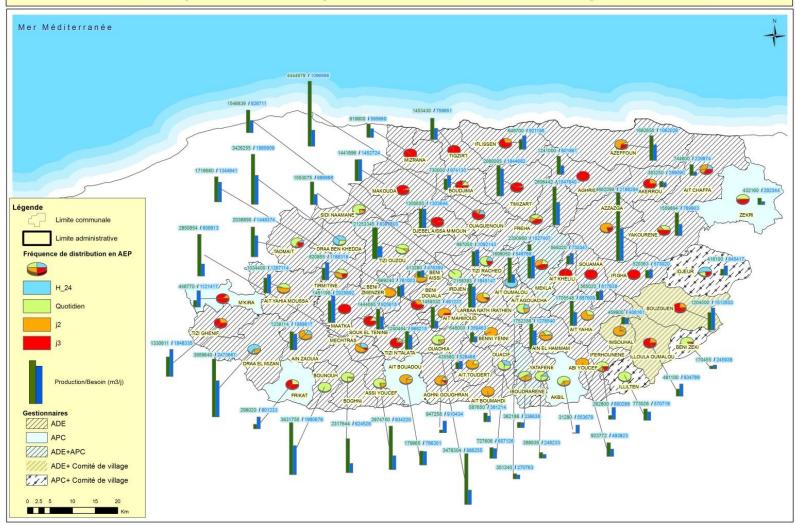




#### Data for IWRM planning:

# **Environmental objectives Programme of measures**

#### Improving the status of "water bodies"


- Defining quantitative or qualitative objectives for water bodies with targeted timeframe
  - ⊗ → ⊕ → ⊕
- Defining a set of measures to reach each objective
  - Implementation monitoring indicators
  - Impact indicators
  - Costs
  - stakeholders





## Quality of water supply services (Algeria)

Carte de production et de fréquence de distribution en AEP de la wilaya de Tizi Ouzou

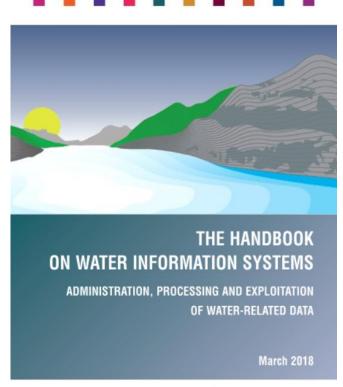






#### What if no data available/usable?

## Include knowledge improvement in your water resources management plan


- Define and implement missing regulation (e.g. protection areas for water abstraction)
- Improve data interoperability
- Improve observation network
  - New monitoring stations
  - Information systems
- Carry-out studies and modelling:
  - Sensitive areas
  - Flood risk areas
  - Eflows
  - Earth observation





## **Further reading**

https://www.riob.org/pub/HandBook-SIE-en/











#### **Breakout sessions**

- Mapping data availability and source or proxy in each country according to the types of data needed for RBMP (from a local planner point of view)
- 45 mins group discussions:
  - Each country prepare its own inputs in 15mins with real name of data providers if it is easier (e.g. water utility X)
    - 3 examples by country: at least one good practice / one important but facing difficulties
  - Discussion preparation of one common table covering all countries with potential transfer of good practices. 25 mins
  - Final wrap-up 5 mins (can be used as buffer for the previous step)
- Feedback: 15 mins by rapporteurs in plenary





#### SWIM and Horizon 2020 Support Mechanism

Working for a Sustainable Mediterranean, Caring for our Future

#### Thank you for your attention.

Contact: Eric MINO, e.mino@semide.org

This Project is funded by the European Union

























