### SWIM and Horizon 2020 Support Mechanism

Working for a Sustainable Mediterranean, Caring for our Future

#### **SWIM-H2020 SM Regional Activities 14**

Presented by:

MOHAMMD SUTARI, MEHSIP RESIDENT EXPERT-JORDAN

SWIM and Horizon 2020 SM REG-14: Refugee Emergency: Fast track project Design of wastewater

26 March 2018, Beirut, Lebanon

This Project is funded by the European Union





























# **SLUDGE TREATMENT**





# SLUDGE TREATMENT CONTENTS

- 1. Volume mass relationship.
- 2. Regulations for solids reuse and disposal.
- 3. Bio-solids classifications.
- 4. Required treatment for class A & B solids
- 5. Criteria for meeting vector attraction requirements.
- 6. Sludge treatment requirements as per Jordanian standard.
- 7. Gravity Thickeners design parameters.
- 8. Sludge digestion
- 9. Dewatering.
- 10. Design Examples





.

# WASTEWATER TREATMENT SCHEMATIC PROCESS DIAGRAM



### **TYPES OF SLUDGE**







5

### **GENERAL**

#### Definitions

- Biosolids, organic wastewater product that remains after solids are stabilized that can be used beneficially.
- The term Sludge is used only before beneficial use criteria have been achieved. It is used in conjunction with a process descriptor(primary sludge, waste sludge.
- The term solids is used in case where it is uncertain whether beneficial use criteria have been met.

#### Problems

- Composed of the substances responsible for the offensive character of untreated wastewater.
- Composed of organic matter which will decompose and become offensive.

#### Sludge Treatment Objectives:

- Reduce water and organic contents.
- Render the solids suitable for reuse or final disposal.





### **VOLUME-MASS RELATIONSHIP**

$$V = \frac{M_S}{\rho_W \times S_{sl} \times P_S}$$

$$V = \frac{M_S}{1000 \times P_S}$$

See example 14-4 M&E page 1493

Where:

V = volume of sludge,m3M<sub>S</sub> = mass of dry solids, kg

 $\rho_W$  = specific weight of water ,1000 kg/m3

S<sub>sl</sub> = specific gravity of sludge

P<sub>S</sub> = percent solids expressed as a decimal

| Mass of Dry      | Volume at % Solids(m3/day) |     |     |     |     |
|------------------|----------------------------|-----|-----|-----|-----|
| Solids<br>kg/day | 0.60%                      | 1%  | 2%  | 3%  | 20% |
| 5000             | 833                        | 500 | 250 | 167 | 25  |
| OLDK             |                            |     |     |     |     |



7

### **REGULATIONS FOR SOLIDS REUSE & DISPOSAL**

- U.S. Environmental Protection Agency issued 40 CFR Part 503 regulations in United States in 1993, which covers the followings:
  - Land application.
  - Surface disposal.
  - Pathogen and Vector Attraction reduction.
  - Incineration.

Vector attraction reduction decreases the potential for spreading infectious disease by vectors such as rodents, insects, and birds.



| ltem           | Class A                                                                             | Class B                                                                                                  |
|----------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Definition     | pathogens are reduced below current detectable levels                               | the pathogens are reduced to levels that are unlikely to pose a threat to public health and environment. |
|                | meet vector attraction requirements (38% in VS reduction)                           | meet vector attraction requirements (38% in VS reduction)                                                |
| Criteria<br>to | A fecal coliform density of less than 1000 MPN/g total dry solids. <sup>1</sup>     | meet fecal coliform limits less than 2X10 <sup>6</sup> MPN/g TS.                                         |
| be<br>met      | Helminth limits of <1 viable ovum/4 g dry solids                                    | treated by a process that reduces but doesn't eliminate pathogens(PSRP)                                  |
|                | Salmonella sp. Density of less than 3 MPN per 4 g of total dry solids. <sup>1</sup> |                                                                                                          |
|                | May be sold or given a way without any pathogen-related restrictions.               | subjecte to site restrictions that limit crop<br>harvesting, animal grazing, and public access           |
| Applications   | prepared for sale                                                                   | Applied to agricultural land                                                                             |
|                | land application                                                                    | disposed off in land fill                                                                                |
|                | home gardens                                                                        |                                                                                                          |

<sup>1.</sup> It is not necessary to satisfy both fecal coliform and salomenallae criteria. Meeting the criteria of one is sufficient to satisfy part 503 rules

# REQUIRED TREATMENT FOR CLASS A & B BIOSOLIDS

- Class A Processes to further reduce pathogens(PFRP)
  - Thermophilic Aerobic Digestion.
  - Alkaline Treatment.
  - Heat treatment.
  - Heat drying.
- Class B Processes to significantly reduce pathogens(PSRP)
  - Aerobic digestion
  - Air drying
  - Anaerobic digestion
  - Lime stabilization.
- VAR Requirements
  - Process to meet at least 38% reduction in volatile solids.





# CRITERIA FOR MEETING VECTOR ATTRACTION REQUIREMENTS(40 CFR Part 503)

- A minimum of 38% reduction in volatile solids during biosolids treatment.
- Less than a specific oxygen uptake rate(SOUR) of 1.5 mg O2/h per gram of total sludge solids at 20°C.





#### 11

# SLUDGE TREATMENT REQUIREMENTS AS PER JORDANIAN STANARD JS 1145:2006

| Treatment<br>Level | Applications                           | Treatment Requirements                                                         | Treatment Method                    | Minimum<br>Retention<br>Time<br>(Days) | Minimum<br>% Volatile<br>solid<br>Reduction |
|--------------------|----------------------------------------|--------------------------------------------------------------------------------|-------------------------------------|----------------------------------------|---------------------------------------------|
|                    |                                        |                                                                                | Composting                          | 60                                     |                                             |
|                    | Fertilizer for all                     | * Fecal coliform < 1000 MPN/g dry solids                                       | Heat Drying                         |                                        |                                             |
| First Class        | applications                           | * Salmonella < 3 MPN/ g dry solids                                             | Air Drying                          | 45                                     |                                             |
| (Class A)          | Except for vegetables.                 | * Nematodes egg. <1 egg /4 gm dry solids<br>* Viruses < 1 unit/4 gm dry solids |                                     | 10                                     | 38%                                         |
| Second Class       | Soil Conditioning                      |                                                                                | Aerobic Digestion @ air temperature | 40                                     | 38%                                         |
| (Class B)          | Disposal to landfill                   | * Fecal coliform < 2*10 <sup>6</sup> MPN/g dry solids                          | Anaerobic Digestion @ 37 C.         | 15                                     | 38%                                         |
|                    |                                        |                                                                                | Anaerobic Digestion @ 24 C.         | 24                                     | 38%                                         |
| Third Class        | only Disposal to<br>Solid Waste Sites. | Only dewatering                                                                | Thickening to 3% solids             |                                        |                                             |

Jordanian Standard SludgeTreatment

# **SLUDGE MASS BALANCE**



# **SLUDGE MASS BALANCE**

| ltem                                    | Total Solids<br>(kg/day) | % Solids | Volume<br>(m³/day) |
|-----------------------------------------|--------------------------|----------|--------------------|
| Primary Sludge                          | 7,000                    | 3%       | 233                |
| Secondary Sludge                        | 4,700                    | 0.70%    | 671                |
| Blended Thickener Influent              | 11,700                   | 1.29%    | 905                |
| Assumed % Solids lost out the thickener |                          | 5.00%    |                    |
| Thickener Effluent                      | 11,115                   | 4.50%    | 247                |
| Digester Effluent                       | 7,297                    | 2.95%    | 247                |
| Assumed % Solids lost in dewatering     |                          | 5.00%    |                    |
| Dewatering Effluent                     | 6,932                    | 23%      | 30                 |

### **DESIGN PARAMETERS FOR GRAVITY THICKENERS**

| Sludge                                    | %Solids co  | Solids loading |           |
|-------------------------------------------|-------------|----------------|-----------|
| Туре                                      | Unthickened | Thickened      | kg/m2.day |
| Primary Sludge                            | 2-6         | 5-10           | 100-150   |
| Trickling-filter humus sludge             | 1-4         | 3-6            | 40-50     |
| Air Activated Sludge                      | 0.5-1.5     | 2-3            | 20-40     |
| Extended Aeration Activated Sludge        | 0.2-1       | 2-3            | 25-40     |
| Anaerobically digested primary sludge     | 8           | 12             | 120       |
|                                           |             |                |           |
| Primary and trickling filter humus sludge | 2-6         | 5-9            | 60-100    |
| Driver and waste activated shades         | 0.5-1.5     | 4-6            | 25-70     |
| Primary and waste activated sludge        | 2.5-4       | 4-7            | 40-80     |





#### 15

## **DESIGN EXAMPLE FOR GRAVITY THICKENER**

| ltem                                | Value | Unit           |
|-------------------------------------|-------|----------------|
| No. of Thickeners                   | 2     |                |
| Total Sludge Flow to All Thickeners | 926   | m³/day         |
| Total Dry Solids to All Thickeners  | 12000 | kg/day         |
| Design Solids Loading Rate          | 2.5   | kg/m2.h        |
| Total Surface Area                  | 200   | m <sup>2</sup> |
| Surface Area Each Thickener         | 100   | m <sup>2</sup> |
| Calculated Diameter                 | 11.3  | m              |
| Used diameter                       | 11.5  | m              |
| Used Total Surface Area             | 208   | m2             |
| Depth                               | 4     | m              |



# MECHANICAL THICKENERS GRAVITY BELT THICKENER







#### 17

# **SLUDGE DIGESTION**



# **ANAEROBIC DIGESTION**



# DESIGN CRITERIA FOR MESOPHILIC ANAEROBIC SLUDGE DIGESTERS

| Parameter             | Units       | Value   |
|-----------------------|-------------|---------|
| Solids loading rate   | kg VSS/m3.d | 1.6-4.8 |
| Solids retention time | day         | 15-20   |

### Estimating Volatile Solids Destruction

$$VS_D = 13.7 \times \ln(SRT) + 18.9$$

| Digestion Time |                   |
|----------------|-------------------|
| SRT            | % Volatile Solids |
| days           | Destruction       |
| 30             | 65                |
| 20             | 60                |
| 15             | 56                |

20

## **GAS PRODUCTION**

- Production of biogas is a direct result of VS destruction.
- Typical values for gas production vary from 0.75 to 1.12 m3/kg of volatile solids destroyed.





#### 21

#### **EXAMPLE ANAEROBIC SLUDGE DIGESTION**

| Volume thick. Sludge            | m3/day      | 2936    |
|---------------------------------|-------------|---------|
| Assumed Thick, Sludge Solids    | 96          | 5       |
| Total Dry Solids                | Kg TSS/day  | 146,782 |
| VSS/TSS                         |             | 0.75    |
| Total Volatile Suspended Solids | Kg VSS/day  | 110,087 |
| Process Temp.                   | °C          | 35      |
| Overall Digestion time(SRT)     | days        | 20      |
| Total Volume                    | m3          | 58,720  |
| No. of Digestors                | no          | 4       |
| Volume of one sludge digetsor   | m3          | 14,680  |
| Diameter                        | m           | 30      |
| Surface Area one digestor       | m2          | 706.5   |
| Depth of conical section        | m           | 3       |
| Height                          | m           | 19.8    |
| Volume Digested Sludge          | m3          | 2936    |
| Organic Solid Load              | Kg VSS/day  | 110,087 |
| % Volatile solids degraded      |             | 50%     |
| Amount Volatile solids degraded | Kg TSS/day  | 55,043  |
| Total DS quantity out           | Kg TSS/day  | 91,739  |
| % Solids Digested Sludge        | %           | 3.12%   |
| Gas Production                  |             |         |
| Min Gas Production              | I/kg org.DS | 500     |
| Amount Gas Production           | m3/day      | 27,522  |
| Required Gas Storage volume     | m3          | 10,000  |
| No. of gas Holders              |             | 2       |
| Each Gas Holder Volume          | m3          | 5,000   |
| Gas Holder Diameter             | m           | 20      |
| Gas Holder Height               | m           | 16      |
| Energy Content of Gas           | kWh/m3      | 6.5     |
| Total Energy                    | kWh/d       | 178,891 |

Anaerobic Digesters



### **AEROBIC SLUDGE DIGESTION**

- Similar to activated sludge process.
- As the supply of available substrate(food) is depleted, the microorganisms begin to consume their own protoplasm to obtain energy for cell maintenance reactions(endogenous phase).
- Cell tissue is oxidized aerobically to CO2, water, and ammonia.
- 75-80% of the cell tissue can be oxidized.
- Ammonia is subsequently oxidized to nitrate as digestion proceeds.
- Nonbiodegradable volatile suspended solids will remain in final product from aerobic digestion.





23

# AEROBIC SLUDGE DIGESTION ADVANTAGES & DISADVANTAGES

- Advantages
  - Easy operation.
  - Low capital cost
- Disadvantages
  - High power cost.
  - Methane gas is not recovered.
  - Effected by temperature.
  - Poor mechanical dewatering for digested sludge.



# GENERAL DESIGN PARAMETERS FOR AEROBIC DIGESTERS

#### Temperature

- The design should provide for the necessary degree of sludge stabilization at the lowest expected liquid operating temperature.
- The design should provide the maximum oxygen requirements at the maximum expected liquid operating temperature.

#### Volatile Solids Reduction

- The major objective of aerobic digestion is to reduce the mass of the solids for disposal.
- The reduction takes place only with the biodegradable contents of the sludge.
- Volatile solids reduction ranging from 35 to 50% are achievable by aerobic digestion.

#### Detention Time(SRT)

Solid destruction is function of temperature and detention time.





25

### **DESIGN CRITERIA FOR AEROBIC DIGESTERS**

| Para                       | meter                                                                                        | Value     | Unit         |  |
|----------------------------|----------------------------------------------------------------------------------------------|-----------|--------------|--|
| SRT <sup>1</sup>           | @ 20 °C                                                                                      | 40        | day          |  |
| SKI                        | @ 15 °C                                                                                      | 60        | uay          |  |
| Volatile solids loading    |                                                                                              | 1.6-4.8   | kg/m3.d      |  |
| Oxygen Requirements        | @ 15 °C  Iding  Cell tissue  BOD in primary sludge  Mechanical aerators  Diffused air mixing | 2.3       | kg O2/kg VSS |  |
| Oxygen Requirements        | BOD in primary sludge                                                                        | 1.6-1.9   | Destroyed    |  |
| Energy for Mixing          | Mechanical aerators                                                                          | 20-40     | kW/1000 m3   |  |
| Energy for Mixing          | Diffused air mixing                                                                          | 0.02-0.04 | m3/m3.min    |  |
| Residual DO in the liquid  |                                                                                              | 1-2       | mg/l         |  |
| Reduction of Volatile susp | ended solids                                                                                 | 38-50     | %            |  |

## **SRT & SLUDGE TREATMENT**

- SRT is selected based on the following treatment requirements/Objectives:
  - Wastewater Treatment without Nitrification (Carbonaceous BOD removal only).
  - ☐ Wastewater Treatment with Nitrification.
  - Wastewater Treatment with Nitrification & Denitrification
  - Wastewater Treatment with Nitrification, Denitrification and sludge stabilization.





27

# VOLATILE SOLIDS REDUCTION IN AEROBIC DIGESTER AS A FUNCTION OF TEMPERATURE AND SRT



# VOLATILE SOLIDS REDUCTION IN AEROBIC DIGESTER AS A FUNCTION OF TEMPERATURE AND SRT







#### 29

## **EXAMPLE AEROBIC SLUDGE DIGESTION**

| Aerobic Sludge Digesters                               |               |        |              |
|--------------------------------------------------------|---------------|--------|--------------|
| Item                                                   | Unit          | Value  | Notes        |
| Total Dry Solids                                       | Kg TSS/day    | 11,115 | mass balance |
| Dry Solids in Primary Sludge                           | Kg TSS/day    | 6,650  | mass balance |
| Dry Solids in Secondary Sludge                         | Kg TSS/day    | 4,465  | mass balance |
| Volume Thickened Sludge                                | m3/day        | 247    | mass balance |
| Incoming Sludge Solids contents                        | %             | 4.50   | mass balance |
| VSS/TSS ratio for Primary Sludge                       |               | 92%    | mass balance |
| VSS/TSS ratio for Secondary Sludge                     |               | 88%    |              |
| VSS in Primary Sludge                                  | Kg VSS/day    | 6118   |              |
| VSS in Secondary Sludge                                | Kg VSS/day    | 3929   |              |
| Total Volatile Suspended Solids                        | Kg VSS/day    | 10,047 | 7            |
| Inert Solids to Digester                               | Kg TSS/day    | 1,068  |              |
| Process Temperature                                    | °C            | 20     |              |
| Hydraulic Detention Time/SRT                           | days          | 20.00  | MOP 8        |
| Total Digester Volume Required                         | m3            | 4,940  |              |
| No. of Digesters                                       | no            | 2      |              |
| Volume of one sludge digester                          | m3            | 2,470  |              |
| Sludge Effective Depth                                 | m             | 5.50   |              |
| Surface Area Each Digester                             | m2            | 449    |              |
| Diameter(If circular)                                  | m             | 23.9   |              |
| Width(If rectangular)                                  | m             | 20.0   |              |
| Length(If rectangular)                                 | m             | 22.5   |              |
| Volume Digested Sludge                                 | m3            | 247    |              |
| Organic Solid Load                                     | Kg VSS/day    | 10,047 |              |
| Calculated volatile solids loading                     | Kg VSS/m3.day | 2.0    |              |
| Average % Volatile solids degraded                     |               | 38%    |              |
| Amount Volatile solids degraded                        | Kg VSS/day    | 3,818  |              |
| Total Dry Solids quantity out of Digester              | Kg TSS/day    | 7,297  |              |
| Calculated % Solids Digested Sludge                    | %             | 2.95   |              |
| Calculated Average SRT taking degraded volatile solids | days          | 25     |              |
| % Volatile solids degraded in Summer(@30 °C)           | %             | 42%    | MOP 8        |
| VSS degraded in Primary solids                         | Kg VSS/day    | 2,570  |              |
| VSS degraded in Secondary Solids                       | Kg VSS/day    | 1,650  |              |
| Total Volatile solids degraded in Summer               | Kg VSS/day    | 4,220  |              |

Aerobic Digester Design

## **SLUDGE DEWATERING**

- Reduction of the moisture contents of sludge and biosolids:
  - Reduction of transport cost.
  - Easy to handle dewatered sludge.
- Dewatering Methods
  - Mechanical dewatering.
    - · Centrifuges.
    - · Belt-filter press.
  - Sludge drying beds.
    - · Sand bottom.
    - Paved bottom.





31

## **DECANTERS/CENTRIFUGES**







# **BELT FILTER PRESS**



### **EXAMPLE MECHANICAL SLUDGE DEWATERING**

| Mechanical Sludge Dewatering                           |              |          |              |
|--------------------------------------------------------|--------------|----------|--------------|
| Item                                                   | Unit         | Value    | Notes        |
| Percentage sludge transferred to Mechanical Dewatering |              | 100%     |              |
| Sludge Feed Solids Contents                            | %            | 2.95     | mass balance |
| Amount of Solids feed                                  | Kg SS/day    | 7,297    | mass balance |
| Assumed % Solids lost with centrate                    | %            | 5%       | mass balance |
| Amount solids out                                      | Kg SS/day    | 6,932    |              |
| Quantity of Sludge Transported to Mech. Dewatering     | m3/day       | 247      | mass balance |
| Volume of digested sludge                              | m3           | 247      |              |
| Type of Feed Sludge Feed pumps                         | Progressiv   | e Cavity |              |
| No. of duty pumps                                      | No.          | 2        |              |
| No. of standby pumps                                   | No.          | 1        |              |
| Days of operation per week                             | days/week    | 6        |              |
| No. of operating hours per day                         | hours/day    | 6        |              |
| Capacity each pump                                     | m3/hour      | 24.0     |              |
| Assumed Solid Contents for Output Sludge               | %            | 23%      |              |
| Quantity of dewatered Sludge based on 36 hrs operation | m3/day       | 35       |              |
| per week                                               | m3/hour      | 5.9      |              |
| Days of operation per week                             | days/week    | 6        |              |
| No. of operating hours per day                         | hours/day    | 6        |              |
| Capacity of all dewatering units                       | m3/hour      | 48       |              |
| No. of duty Centrifuges                                | No           | 2        |              |
| No. of standby Centrifuges                             | No           | 0        |              |
| Hydraulic capacity Each                                | m3/hour      | 24       |              |
| Main Drive size for Centrifuge                         | Kw           | ??       |              |
| Back Drive size for Centrifuge                         | Kw           | ??       |              |
| Solids Loading each machine                            | Kg DS/h      | 709      |              |
| Screw conveyor capacity each machine                   | m3/hour      | 2.9      |              |
| Average Polyelectrolyte Consumption                    | kg/ton of DS | 4        |              |
| Required Polyelectrolyte quantity                      | Kg/day       | 29       |              |

Mechanical Dewatering



# COMBINED DEWATERING UNIT GRAVITY BELT THICKENER+BELT FILTER PRESS







35

#### **DEWATERING CALCULATIONS FOR COMBINED UNITS**



# **EXAMPLE SLUDGE DRYING BEDS**

| Sludge Drying Beds                                     |            |       |                                               |
|--------------------------------------------------------|------------|-------|-----------------------------------------------|
| Total Wet Quantity of Digested Sludge                  | m3         | 247   |                                               |
| Percentage sludge transferred to Mechanical Dewatering |            | 0%    |                                               |
| Percentage sludge transferred to Drying Beds(SDBs)     |            | 100%  |                                               |
| Quantity of Sludge Transported to SDBs                 | m3/day     | 247   |                                               |
| Initial Sludge Solids Contents                         | %          | 2.95  |                                               |
| Amount of solids                                       | Kg TSS/day | 7297  |                                               |
| Assumed Solids Contents of dried sludge                |            | 45%   | WEF Manual of<br>Practice No. 8<br>Page 24-74 |
| Average Drying Time                                    | days       | 21    |                                               |
| Assumed sludge thickness                               | m          | 0.30  |                                               |
| Total Area required                                    | m2         | 17315 |                                               |
| Calculated Solids Loading                              | Kg/m2.a    | 154   |                                               |
| Average quantity of dried Sludge                       | m3/day     | 16    |                                               |

Sludge Drying Beds



37

## SWIM-H2020 SM

#### For further information

Website

www.swim-h2020.eu E: info@swim-h2020.eu

LinkedIn Page

SWIM-H2020 SM LinkedIn

**Facebook Page** 

SWIM-H2020 SM Facebook





### SWIM and Horizon 2020 Support Mechanism

Working for a Sustainable Mediterranean, Caring for our Future

## Thank you for your attention.

This Project is funded by the European Union

























