SWIM and Horizon 2020 Support Mechanism

Working for a Sustainable Mediterranean, Caring for our Future

SWIM-H2020 SM Regional Activities 14

Presented by:

MOHAMMD SUTARI, MEHSIP RESIDENT EXPERT-JORDAN

SWIM and Horizon 2020 SM REG-14: Refugee Emergency: Fast track project Design of wastewater

26 March 2018, Beirut, Lebanon

This Project is funded by the European Union

Preliminary & Primary Treatment

Preliminary & Primary Treatment Contents

- 1. Screens
- 2. Screening washer & compactor
- 3. Typical design parameters for coarse screens
- Design of the bar screen channel
- 5. Head loss in bar screens
- 6. Flow equalization
- Grit removal
- 8. Typical design parameters for aerated grit channels
- Rotating blades grit removal
- 10. Flumes
- 11. Primary Sedimentation Tanks
- 12. Design Example

SCHEMATIC TREATMENT PROCESS

Preliminary Treatment

- Designed to remove settleable solids and reduce the organic load (BOD) on the secondary units.
- Primary treatment includes
 - Bar screen
 - Grit chamber
 - Primary clarifier
- What Does It Remove
 - Untreatable Solid Materials
 - Boards, rocks, rags, plastics and other materials
 - Sand, eggshells, grit

FLOW TO TREATMENT

- Average Flow
- Max Month Flow
- Max Day Flow
- Peak Dry weather flow (PDWF)
- Peak Wet weather flow (PWWF)

OVER FLOW STRUCTURE

The intent of the overflow structure is to protect the treatment plant from overloading and flooding due to high wet weather flow

SCREENS

Coarse Screens

- Clear Bar spacing 6-150 mm.
- Common uses are to remove large solids, rags and debris that may clog or damage downstream components such as fine screens, pumps, valves and piping.
- Can either be hand or mechanically cleaned.
- Fine Screens
 - Clear bar spacing <6 mm.
 - Remove finer particles that get through the coarse screen and that can cause damage to downstream components.
 - Mechanically cleaned

SCREENING WASHER COMPACTOR

- The purpose of the washed/compactor is to provide for washing, dewatering and compaction of the material removed from the screens.
- The unit washes the organic material from the screenings and reintroduces the organics to the main influent flow downstream of the screen.
- Additional advantage includes reduction of the screenings volume and weight and elimination of odors caused by the organics.

QUANTITY OF REMOVED SCREENINGS

Size of opening between bars		Volume of Screenings (L/1000 m ³)	
(mm)		Range	Typical
<6	Fine	44-110	75
12.5	Coarse	37-74	50
25		15-37	22
37.5		7-15	11
50		4-11	6

MULTIPLE RACK SCREEN

CLIMBER SCREEN

2 The rake arm enters the channel upstream from the screen.

3 At the bottom of the pin rack, the rake engages the screen.

Cogwheels walk the rake arm up the pin rack, transporting screenings for removal.

DESIGN OF THE BAR SCREEN CHANNEL

 The cross section of the bar screen channel is determined from the continuity equation:

$$Q_d = A_c \times V_a$$

$$A_c = \frac{Q_d}{V_a}$$

$$A_c = W \times d$$

$$\frac{d}{W} = 1.5$$

Where:

 Q_d = design flow, m3/s

 A_c = channel cross section, m2

 V_a = velocity in the approach channel, m/s

d = water depth in the channel, m

Typical Design Information for Manually & Mechanically Cleaned Coarse Screens(Bar Racks)

Parameter	Unit	Manual	Mechanical
Bar Width	mm	5-15	5-15
Bar Depth	mm	25-38	25-38
Bar Spacing	mm	25-50	15-75
Slope from Vertical	0	30-45	0-30
Maximum Approach Velocity	m/s	0.3-0.6	0.6-1
Minimum Approach Velocity	m/s		0.3-0.5
Maximum velocity through bar screen	m/s	-	0.9
Allowable headloss	mm	150	150-600

To prevent deposition of grit in the channel

To prevent forcing of screenings through the openings

HEAD LOSS THROUGH THE BAR SCREEN(COARSE SCREEN)

$$h_l = \frac{(V_b^2 - V_a^2)}{2 \times g} \times \frac{1}{C}$$

Where:

 h_1 = head loss, m

 V_a = approach velocity in upstream channel, m/s

 V_b = velocity through the opening, m/s

 $g = acceleration due to gravity, 9.81 m/s^2$

C = empirical discharge coefficient

0.7 for a clean screen

0.6 for a clogged screen.

VELOCITY THROUGH THE SCREEN(V_b)

$$V_b = \frac{Q}{A_{net}} \bigg| \bigg|$$

$$A_s = \frac{A_c}{Sin\theta}$$

$$\%OpenArea = \frac{B_S}{B_S + B_t}$$

$$A_c = d_u \times W$$

$$A_{net} = A_s \times f \times \% OpenArea$$

$$V_b = \frac{Q \times (B_s + B_t) \times \sin \theta}{d_u \times W \times B_s \times f}$$

$$A_{net} = \frac{d_u \times W \times f \times \frac{B_s}{(B_s + B_t)}}{Sin\theta}$$

Where:

 V_b = velocity through screen, m/s.

Q = flow rate, m3/s

 A_{net} = net area of screen, m2

 θ = angle of inclination, degree.

Ac = channel area, m2.

A_s = area screen, m2

 d_u = depth of water in the channel, m.

W = channel width, m.

Bs = bar spacing, m.

Bt = bar thickness, m.

f = solid build-up coefficient, 0.80.

SCREEN CALCULATOR

SCREENS CALCULATOR

Given Data

Q(Flow to each channel)	1.05	m3/s
W(Width of channel)	1.5	m
d_d (Downstream Depth of water)	0.85	m
Bs(Bar spacing)	8	mm
Bt(Bar Thickness)	5.5	mm
θ (Degree)(Screen slope)	60	
θ (Radian)	1.05	
C(Discharge coefficient)	0.7	
f(Solids built up coefficient)	1	

Calculation

%OpenArea of screen	0.59	
assumed Head loss(h _I)	0.050	m
d _u (Upstream water depth)	0.90	m
V _a (Upstream velocity)	0.78	m/s
V _b (Velocity through screen)	1.14	m/s
Calculated Head loss(h _{I)}	0.050	m
Tolerance	0.00003	

$$V_a = \frac{Q}{W \times d_u} \qquad \boxed{d_u = d_d + h_l}$$

$$d_u = d_d + h_l$$

$$V_b = \frac{Q \times (B_s + B_t) \times \sin \theta}{d_u \times W \times B_s \times f}$$

$$h_l = \frac{(V_b^2 - V_a^2)}{2 \times g} \times \frac{1}{C}$$

HEAD LOSS THROUGH THE FINE SCREEN

$$h_l = \frac{1}{2 \times g} \times \left(\frac{Q}{C \times A}\right)^2$$

Where:

 h_1 = head loss, m

Q = discharge through screen, m³/s

A = effective open area of submerged screen, m^2

C = empirical discharge coefficient

0.6 for a clean screen

FLOW EQUALIZATION

Definition

- Damping of flow rate variations to achieve a nearly constant flow rate.
- Accomplished by storing excess wastewater during high flow periods
- Excess wastewater is released during low flow periods

Purpose

- Overcome the operational problems caused by flow rate variations.
- Improve performance of downstream processes.
- Biological treatment is enhanced because shock loadings are eliminated/minimized.
- Reduce the size and cost of the downstream treatment facilities.

GRIT REMOVAL

Grit Composition

- Sand and gravel.
- Solid materials that have specific gravities greater than organic solids.
- Common spec' is to remove grit particles down to 0.2mm dia. with an SG of 2.65

How?

 Grit is removed from flow by reducing velocity within the containment zone but not too much otherwise organics will drop out too.

Purpose

- Protect downstream mechanical equipment from excessive wear and clogging.
- Reduce solids accumulation in tanks and pipelines.
- Improve biological treatment and reduce sludge quantities..

Types of Grit Chambers

- Horizontal-flow grit chambers.
- Aerated grit chambers
- Vortex-type grit chambers

AERATED GRIT CHAMBERS

- Air is introduced along one side of a rectangular tank to create a spiral flow pattern perpendicular to the flow through the tank.
- The heavier grit particles that have higher settling velocities settle to the bottom of the tank. The lighter particles remain in suspension and pass through the tank.
- The velocity of roll governs the size of particles of a given specific gravity that will be removed. High velocities would cause the grit to be carried out of the chamber. Smaller velocities would cause the organic material to be removed.
- Aerated grit chambers are designed to remove 0.21 mm diameter (65-mesh) or larger particles.

