SWIM and Horizon 2020 Support Mechanism

Working for a Sustainable Mediterranean, Caring for our Future

Design of Long Term Solutions for Solid Waste Management Sanitary landfills

Presented by:

Mr. Faouzi BEN AMOR, Environmental of Expert - MeHSIP

SWIM and Horizon 2020 SM Title of Meeting 28-29 March 2018, Beirut, Lebanon

This Project is funded by the European Union

Landfill design - General information

Landfill design means:

- Dimensioning the landfill (waste quantity, example for 20 yrs.)
- Design of **the whole infrastructure** (like access road, buildings, electric power supply, drinking water supply, all internal roads, weighbridge, workshop etc.)
- To decide which bottom liner system is the best under the given circumstances / conditions
- Dimensioning of leachate collection system and storage pond
- Dimensioning of leachate treatment
- Dimensioning of landfill gas collection system and flare (and probably landfill gas utilization)
- Dimensioning surface water drains and retention ponds
- Stability analyses, settlement calculations...

General information

- Good design of a landfill will prevent, or reduce as far as possible, negative effects on the environment, as well as the risks to human health arising from the landfilling of waste.
- The design process should be consistent with the need to **protect** the environment and human health.
- Landfill design is an interactive process incorporating the conceptual design proposals, the findings of the site investigation and the environmental and risk assessment.
- Typical landfill consists of **several cells** in which the waste is systematically placed.
- Landfill base usually consists of a liner (clay or synthetic) that
 minimizes the leakage of liquid waste materials and leachate into
 groundwater system.

Presentation content

- Landfill siting
- Site investigation
- Volume / capacity of landfill
- Design principles conceptual
- Surface water drainage system
- Leachate collection and treatment system
- Lining systems (Bottom liners)
- Landfill gas collection system
- Landfill infrastructures

Landfill design Siting

Landfill design - Siting

Common Problems

- Can take lengthy periods of time and is politically challenging
- There is a strong likelihood of receiving some opposition to the proposed landfill
- In some cases this opposition can paralyze progress for many years
- Opposition is likely to be greatest for ISWM facilities involving landfill and incineration
- Or when one municipality is receiving another municipality's waste. Or waste from a city is being sent to a satellite area.

Landfill design – Siting exclusion criteria

- Drinking water protection and catchment areas
- High flood areas
- Areas with highly permeable soils
- Areas with unstable ground like swamps, moors and/or marshes.
- Areas with extreme topography/morphology
- Areas endangered by swallow holes, collapse sites, deep digging
- Areas in close proximity to populated areas (or centres of settlement)
- Areas beyond a reasonable distance from centres of waste generation
- Areas nearer than 2 km to airports
- National parks, nature protection areas
- Historical, religious or other important cultural sites or heritage

Siting inclusion criteria

- The size of the site should be larger than the minimum area requirement for the construction of the landfill (should satisfy least 15-20 years capacity)
- The site should have some possibility for land acquisition
- The site should have some possibility for engineering design and environmental protection
- The site should have some possibility of being acceptable to neighboring public/communities
- The location of the site should have a good chance to have compatibility with wider development priorities, and specific regional development and land use plans

Site investigation

- Site topographic survey: must be done at good scale to be used as the baseline for earth work quantities precisely (to extend beyond site limits and to be attached to national geodesic system);
- Sub Soil Investigation: type of soil, depth of GWT and bedrock, permeability of various strata, strength parameters for stability, extent of availability of liner materials (borehole drillings, soil sampling, stratigraphy logging, in-situ testing);
- Hydrogeological Investigation: Depth of GWT, GW flow direction, Baseline GW quality parameters;
- Hydrological Investigation: To estimate the quantities of runoff for appropriate design of drainage facilities (limits of watershed, IDF curves, etc.)
- Geological and seismic Investigation: to delineate the bedrock profile beneath the landfill base

Landfill design - Capacity for 15 years

Year of operation	Year	Pop. Growth	Population	MSW prod. Rate	Waste Quantity	Average waste density	Average waste volume	Cover material	Landfill volume	Total Landfill volume
		%	hab.	kg/hab/day	t/year	t/m ³	m ³ /year	%	m³/year	m ³
1	2011	2,5%	113 972	0,89	37 024	0,9	41 138	15%	47 308	47 308
2	2012	2,5%	116 821	0,89	37 949	0,9	42 166	15%	48 491	95 799
	•••	•••			•••	•••	•••		•••	
	•••				•••				•••	
11	2021	2,5%	145 894	0,94	50 056	0,9	55 618	15%	63 961	603 460
12	2022	2,5%	149 541	0,94	51 308	0,9	57 008	15%	65 560	669 020
13	2023	2,5%	153 280	0,94	52 590	0,9	58 434	15%	67 199	736 219
14	2024	2,5%	157 112	0,97	55 625	0,9	61 806	15%	71 077	807 295
15	2025	2,5%	161 040	0,97	57 016	0,9	63 351	15%	72 854	880 149

The needed area of the landfill can be estimated as follows (as a first rough estimation)

$$V = (A_1 + A_2 + \sqrt{A_1 \cdot A_2) \cdot h}$$

The average height of a landfill should be minimum 15, better 20 m.

Landfill design - Design principles

Whether the landfilling is to be above or below the ground surface or a combination of both depends on the **topography** of the site and the **depth of ground water table**. There are many possible sections and the landfill may take the following forms

Landfill design - Site layout plan

Landfill design - Cross section through landfill

- (1) Geological barrier
- (2) Bottom liner
- (3) Drainage system
- (4) Leachate collection / discharge
- (5) Surface water drainage
- (6) Embankment dams
- (7) Access road to landfill

- (8) Waste body
- (9) Waste installation
- (10) Landfill gas collection system
- (11) Capping system
- (12) Landfill gas collection pipe
- (13) Groundwater monitoring
- (14) Plants (so-called recultivation)

