SWIM and Horizon 2020 Support Mechanism

Working for a Sustainable Mediterranean, Caring for our Future

SWIM-H2020 SM Regional Activities 14

Presented by:

MOHAMMD SUTARI, MEHSIP RESIDENT EXPERT-JORDAN

SWIM and Horizon 2020 SM REG-14: Refugee Emergency: Fast track project Design of wastewater

26 March 2018, Beirut, Lebanon

This Project is funded by the European Union

SESSION-2

FLOW, LOADS & DISCHARGE STANDARDS CONTENTS

- 1. Selection of design flow & loads.
- 2. Discharge standards & limits.
- 3. Component of wastewater flow
- 4. Statistical analysis for peaking factors
- 5. Historical flow rate data analysis
- 6. Diurnal flow
- 7. Mass loadings
- 8. Infiltration & inflow
- 9. Historical wastewater pollutant analysis
- 10. American standards for design loadings

3

SELECTION OF DESIGN FLOWS & LOADS

•	Design flow & Loads depend on:
	☐ Available plant data.
	Specific requirements by Client or the regulatory agencies.
	☐ Effluent standards.
	□ Population.
	☐ Water demand and wastewater generation.
	☐ Per capita pollutant loads.
•	The design capacity of the plant is stated in terms of the annual average
	flow(AADF or ADF).
•	The quantity of flow received at a wastewater treatment plant varies in response to daily, weekly, and seasonal patterns. Therefore the WWTP must be designed to handle a range of flows and loads.

SELECTION OF DESIGN FLOWS & LOADS

- WWTP upgrade or rehabilitation.
 - Historical flow and loads data are used for developing the basis of design.
- New WWTP.
 - Typical wastewater flow rates, loads and peaking factors from local sources or published values.
 - Population estimate and projection.
 - · Per capita wastewater generation.

5

PER CAPITA BOD ESTIMATION FOR EMERGENCY

	Per C	Per Capita BOD Generation g/capita/day		
Water Consumption I/c/d	50	60	70	
	BOD Concentration mg/l			
35	1429	1714	2000	
50	1000	1200	1400	
60	833	1000	1167	
100	500	600	700	
150	333	400	467	
200	250	300	350	

DISCHARGE STANDARDS & LIMITS

- Jordanian standards for reclaimed wastewater
 - Probability of occurrence of given limits are not defined. They are assumed to be the Maximum month limits.
- What the limits apply to:
 - Are they average monthly?
 - Are they average weekly?
 - Are they maximum daily for 24 hr composite sample?

 There is a need to define the loading condition for effluent limit.

7

DISCHARGE LIMITS FOR AS-SAMRA WWTP

- BOD/TSS/TN= 30 mg/l being the maximum value in 80% of one month's 24 hour composite, flow proportional samples.
- Nematode eggs<1 egg/l being the maximum value in 80% of one year's bimonthly 24-hour composite flow proportional samples.
- FC=1000 being the maximum value in 80% of one 3 month's biweekly 24-hour composite flow proportional samples.

JORDANIAN STANDARDS

		Irrigation				Disc	Discharge	
	Parameter	Cooked vegetables	Fruit trees Green Areas	Crops industrial products	Flowers	Groundwater recharge	Streams, Wadis &	
		A	В	Forestry C			reservoirs	
	BOD_5	30	200	300	15	15	60	
	COD	100	500	500	50	50	150	
	DO	>2	-	-	>2	>2	>1	
	TDS	1500	1500	1500	1500	1500	1500	
	TSS	50	200	300	15	50	60	
	FOG	8	8	8	12	8	8	
	MBAS	100	100	100	15	25	25	
	NO_3	30	45	70	45	30	80	
	$\mathrm{NO_{3}} ext{-}\mathrm{N}$	7	10	16	10	7	18	
	$\mathbf{NH_4}^+$	-	-	-	-	5	-	
	Total-N	45	70	100	70	45	70	
	PO ₄ -P	30	30	30	30	15	15	
	E.Coli (MPN/100 ml)	100	1000	-	<1.1	2.2	1000	
CONSTR	Nematodes (eggs/L)	<1	<1	<1	<1	<1	<1	

TUNISIAN STANDARD

Parameter (mg/l)	Max Limits	Category 1	Category 2	Category 3
BOD ₅	30			
COD	30			
Conductivity µs/cm	7000			
FOG		20	10	30
NO ₃		90	50	90
NO ₃ -N		20	11	20
NH ₄ -N		30	1	100
Total-P		0.1	0.05	10
Fecal.Coli (MPN/100 ml)		1000	1000	-
Nematodes (eggs/L)		≤1	≤1	≤1

PALESTINIAN STANDARD

Parameter	High Quality	Good Quality	Moderate Quality	Low Quality
	A	В	C	D
BOD_5	20	20	40	60
COD	50	50	100	150
DO	>1	>1	>1	>1
TDS	1200	1500	1500	1500
TSS	30	30	50	90
FOG	5	5	5	5
NO_3 -N	20	20	30	40
NO ₃	89	89	133	177
$\mathrm{NH_{4}\text{-}N}$	5	5	10	15
Total-N	30	30	45	60
PO ₄ -P	15-20	15-20	15-20	15-20
E.Coli (MPN/100 ml)	10	100	100	100
Nematodes (eggs/L)	≤1	≤1	≤1	≤1

11

STATISTICAL ANALYSIS

- Mean
 - Average
- Median
 - The middle value in the list of numbers.
- Mode
 - The value that occurs(repeated) most often.
- Probability Value(Percentile)
 - The value of a variable below which a certain <u>percent</u> of observations fall.
 - 20th percentile means the value below which 20% of observations may be found.
 - 50th percentile = median

COMPONENTS OF WASTEWATER FLOW

- Domestic wastewater.
- Industrial wastewater.
- Infiltration & Inflow(I&I).
- Storm water(for combined sewer systems).

13

DEFINITION OF FLOWRATE TERMINOLOGY

- Annual Average Flow(AADF or ADF)
 - Total flow over one year period divided by 365 days.
- Maximum Day Flow(MDF)
 - Maximum flow during 24 hour period during the year.
- Maximum Month Flow(Maximum Monthly Average)
 - Average daily flow during the maximum calendar month.
- Peak Hour Flow(PHF)
 - Peak sustained flow rate occurring during a one-hour period.
- Average Dry Weather Flow(ADWF)
 - The average daily flow during periods without rainfall.
- Average Wet Weather Flow(AWWF)
 - Average daily flow during rainfall periods.
- Infiltration & Inflow
 - The contribution to wastewater flows from extraneous groundwater or storm water entering the collection system.

FLOWRATE AND MASS LOADING FACTORS

Factor		Purpose for Design & Operation
Flov	vrate	
	Average daily flow	Development of flowrate ratios Estimating pumping and chemicals cost
	Maximum day	Equalization basin sizing Chlorine tanks sizing
	Maximum month	Reporting Chemical storage
	Minimum hour	Low range of plant flow meter
	Peak hour	Hydraulic design Sizing Pumping facilities Grit removal units sizing Sedimentation tanks sizing
Mas	s loading	
	Maximum day	Sizing aeration system
	Maximum month	Sizing biological treatment
	Maximum week	Solids handling

15

HOW TO ESTIMATE PEAKING FACTORS FOR FLOW & LOADS

Load Condition	Probability Value
Flowrate	
Average day	Average of the daily flow
Minimum day	5 th Percentile of the daily flow
Maximum day	95 th Percentile of the daily flow
Maximum month	95 th Percentile of the 30 day moving average flow
Mass loading	
Average day	Average of the daily mass load
Minimum day	5 th Percentile of the daily mass load
Maximum day	95 th Percentile of the daily mass load
	95 th Percentile of the 30 day moving average values
Maximum month	90 th Percentile of the daily mass load data for irrigular sampling

 $Max._month_PF = \frac{Max._month_Flow/Load}{Average month Flow/Load}$

$$Max._day_PF = \frac{Max._day_Flow/Load}{Average_day_Flow/Load}$$

HISTORICAL FLOWRATE DATA ANALYSIS

AVERAGE WASTEWATER FLOW PROJECTION

Project life.

- Served population.
- Per capita water supply.
- Per capita wastewater generation

Year	Population	Per Capita Water Supply I/c/d	Per Capita Wastewater Generation I/c/d	Average Flow m3/day
2010	51,461	85	68	3,499
2015	74,583	100	80	5,967
2020	86,357	100	80	6,909
2025	97,276	100	80	7,782
2030	108,034	100	80	8,643
2035	118,637	100	80	9,491

AMMAN DIURNAL FLOW AT AING GHAZAL

()

19

DIURNAL FLOW, CONCENTRATION & LOAD VARIATIONS

MASS LOADINGS

$$Mass_Loading(kg / day) = \frac{Concentration(mg / l, g / m3) \times Flowrate(m3 / day)}{1000(g / kg)}$$

$$Daily_Mass_Loading(kg / day) = \sum_{1}^{n} \frac{Concentration(g / m3, mg / l) \times flowrate(m3 / day)}{1000(g / kg)}$$

21

CURRENT AVERAGE MASS LOADS, CONCENTRATION & FLOW

 The current plant data is used to determine the design concentrations for the facility upgrade.

INFILTRATION & INFLOW

Infiltration

The portion of of the percolating rainfall that finds its way to sewers thorough defective pipes, pipe joints, connections, or manhole walls.

Inflow

The portion of surface run-off that finds its way directly into the sewer system from such sources as roof leaders, basement drains, yard and area drains, manhole covers and cross connection from storm sewers.

Infiltration & Inflow depend on:

- Unsealed parts /openings to the sewer network.
- Pipeline lengths
- Number and type of joints.
- Age.

- Rainfall intensity and duration.
- · Topography.
- Vegetation cover.
- Soil type.

23

ESTIMATION OF INFILTRATION & INFLOW

Diameter	Infiltration Lower Limit			Infiltration Upper Limit		
Diameter (mm)	m3/d.km.mm	l/s/Km	Quantity for 1 Km Network (m3/day)	m3/d.km.mm	l/s/Km	Quantity for 1 Km Network (m3/day)
200	0.01	0.02	2	1.00	2.31	200
300	0.01	0.03	3	1.00	3.47	300
400	0.01	0.05	4	1.00	4.63	400
500	0.01	0.06	5	1.00	5.79	500

WAJ has imposed regulation to prevent the connection of surface water drainage to the wastewater network.

Source: Wastewater Engineering: Collection & Pumping of Wastewater, Mercan & Eddy.

HISTORICALL WASTEWATER POLLUTANT ANALYSIS

 Purpose to find peaking factors for max day and max month pollutant loads.

Historical Data Analysis

25

DESIGN LOADS IN AMERICAN PRACTICE

- Each facility component or process is designed for the design flow/load that are critical for the specific component.
- The American practice is to use the following basis of design:
 - Maximum month load to size the biological reactors.
 - Maximum day loads to size the aeration system.
 - Maximum week load for solids treatment.
 - Minimum day loads to check turndown for aeration system.
 - Maximum day flow and peak hour flow for secondary clarifiers.

RESULTS FOR WWTP FLOW & LOADS

INFLUENT CHARACTERIZATION					
Average Influent Flow	m³/d	134,300			
Influent BOD ₅	mg/L	390			
Influent COD	mg/l	750	1		
Influent TSS	mg/L	360			
Influent TKN	mg/L	75.0			
Influent TP	mg/L	10			
PEAKING FACTORS		MIN	ADF	MM	MD
Hydraulic		0.5	1.00	1.20	1.30
BOD ₅ Loading		0.5	1.00	1.20	1.30
COD Loading		0.5	1.00	1.20	1.30
TSS Loading		0.5	1.00	1.20	1.30
TKN Loading		0.5	1.00	1.20	1.30
TP Loading		0.5	1.00	1.20	1.30
INFLUENT CONDITIONS		MIN	ADF	ADMM	MD
INFLUENT CONDITIONS Flow	m3/day	MIN 67150	ADF 134300	ADMM 161160	MD 174590
Flow	m3/day kg/d				
	<u> </u>	67150	134300	161160	174590
Flow Influent BOD ₅	kg/d	67150 26,189	134300 52,377	161160 62,852	174590 68,090
Flow	kg/d mg/l	67150 26,189 390	134300 52,377 390	161160 62,852 390	174590 68,090 390
Flow Influent BOD ₅ Influent COD	kg/d mg/l kg/d	67150 26,189 390 50,363	134300 52,377 390 100,725	161160 62,852 390 120,870	174590 68,090 390 130,943
Flow Influent BOD ₅	kg/d mg/l kg/d mg/l	67150 26,189 390 50,363 750	134300 52,377 390 100,725 750	161160 62,852 390 120,870 750	174590 68,090 390 130,943 750
Flow Influent BOD ₅ Influent COD Influent TSS	kg/d mg/l kg/d mg/l kg/d	67150 26,189 390 50,363 750 24,174	134300 52,377 390 100,725 750 48,348	161160 62,852 390 120,870 750 58,018	174590 68,090 390 130,943 750 62,852
Flow Influent BOD ₅ Influent COD	kg/d mg/l kg/d mg/l kg/d mg/l	67150 26,189 390 50,363 750 24,174 360	134300 52,377 390 100,725 750 48,348 360	161160 62,852 390 120,870 750 58,018 360	174590 68,090 390 130,943 750 62,852 360
Flow Influent BOD ₅ Influent COD Influent TSS	kg/d mg/l kg/d mg/l kg/d mg/l kg/d mg/l kg/d	67150 26,189 390 50,363 750 24,174 360 5,036	134300 52,377 390 100,725 750 48,348 360 10,073	161160 62,852 390 120,870 750 58,018 360 12,087	174590 68,090 390 130,943 750 62,852 360 13,094

Flow & Loads

27

APPENDIX

SWIM-H2020 SM

For further information

Website

www.swim-h2020.eu E: info@swim-h2020.eu

LinkedIn Page
SWIM-H2020 SM LinkedIn

Facebook Page
SWIM-H2020 SM Facebook

SWIM and Horizon 2020 Support Mechanism

Working for a Sustainable Mediterranean, Caring for our Future

Thank you for your attention.

