

MEASUREMENT METHODS FOR WASTEWATER CHARACTERIZATION

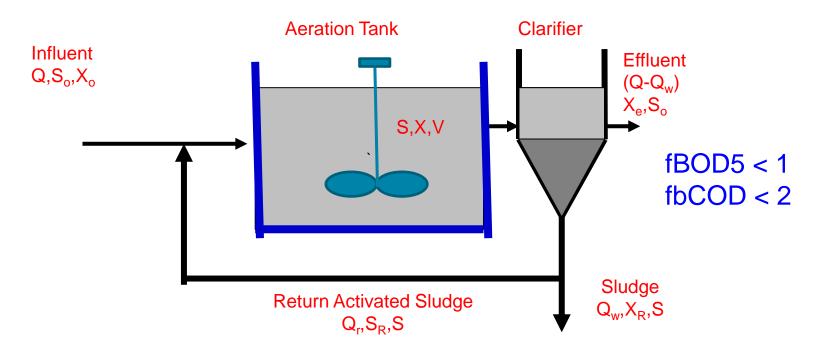
COD FRACTIONS

COD FRACTIONS CRYPTIC VARIABLES NAMES FOR BIOWIN & GPS-X

		Bio	oWin		GPS- Librar		GPS- Library	
	Nonbiodegradable	Xı	Fu	ıp	хi	frxi	хi	frxi
Particulate	Slowly Biodegrdable	X _{SP}	F _{Xs}	F _{xsp}	xs		xs	
Colloidal		Xsc		F _{xc}	scol	frxcol		
Soluble	Readily Biodegradable	S _{bs}	Fb	es	SS	frss	SS	frss
	Nonbiodegradable	S _{us}	Fu	IS	si	frsi	si	frsi

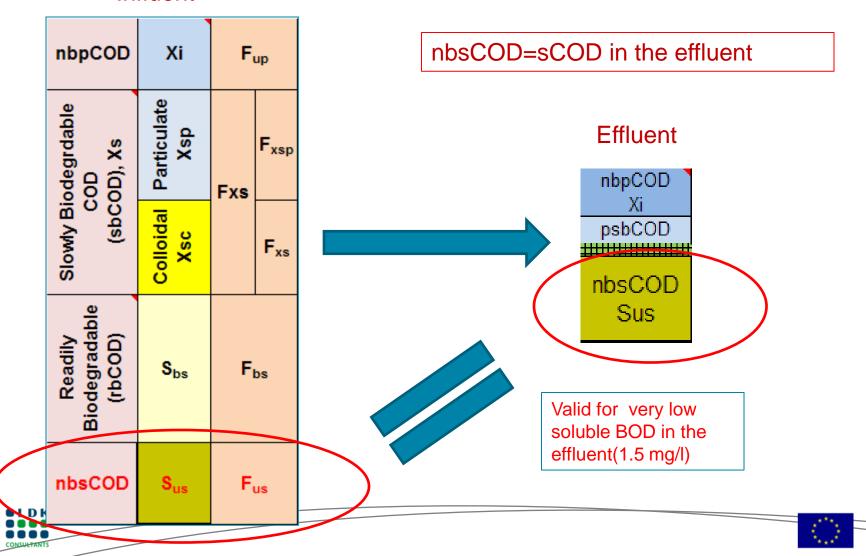
NON-BIODEGRADABLE SOLUBLE COD(nbsCOD,Sus)

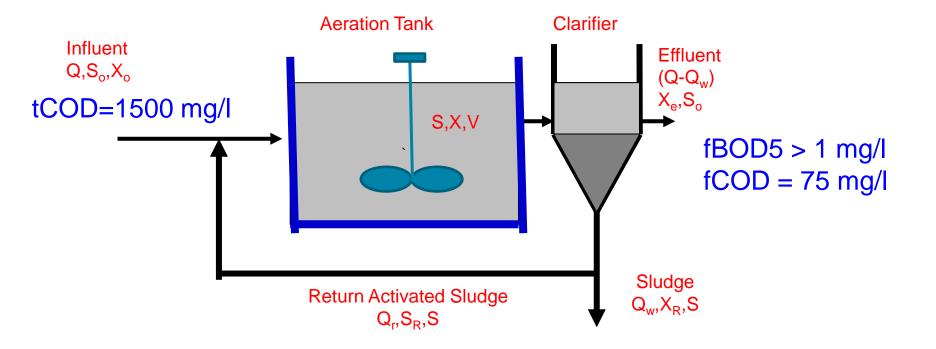
- The concentration of nonbiodegradable soluble COD in the influent is determined by assuming that all soluble biodegradable COD is degraded within the process and the soluble COD in the effluent is exclusively non-biodegradable.
 Therefore the influent soluble nonbiodegradable COD equals effluent soluble COD.
- Should measurable effluent soluble BOD exists then the nonbiodegradable effluent COD equals the total effluent COD minus the effluent soluble biodegradable COD.


nbpCOD	Xi	F _{up}	
Slowly Biodegrdable COD (sbCOD), Xs	Colloidal Particulate Xsc Xsp	F _{xsp}	
Slowly Bi C (sbC)	Colloidal Xsc	F _{xs}	
Readily Biodegradable (rbCOD)	S _{bs}	F _{bs}	
nbsCOD	S _{us}	F _{us}	

ACTIVATED SLUDGE SYSTEM EFFLUENT SOLUBLE SUBSTRATE

SRT> 3 days

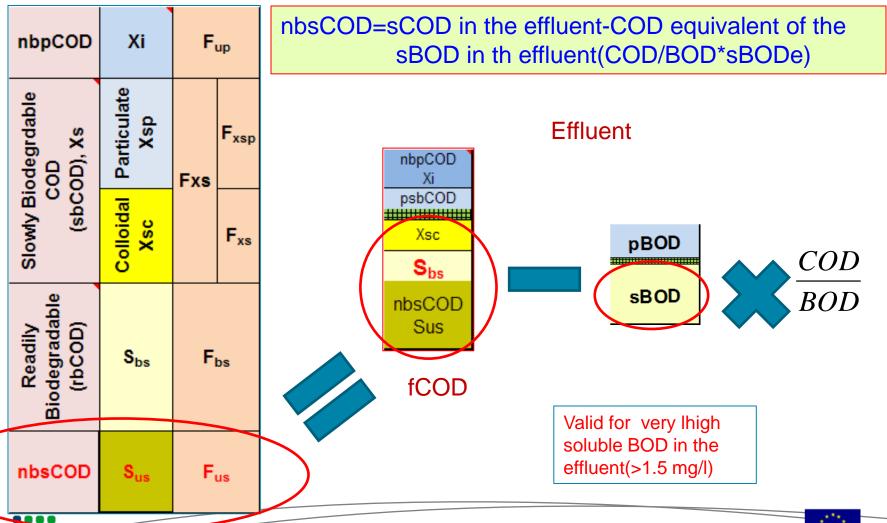


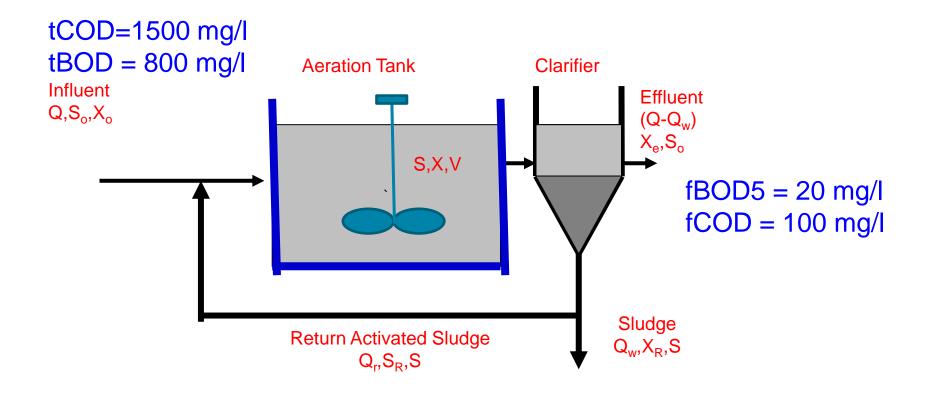


NON-BIODEGRADABLE SOLUBLE COD(nbsCOD,S_{us}) LOW EFFLUENT BOD

Influent

EXAMPLE nbsCOD LOW FILTERED EFFLUENT BOD


nbsCOD=75 mg/l Sus=75/1500=5%

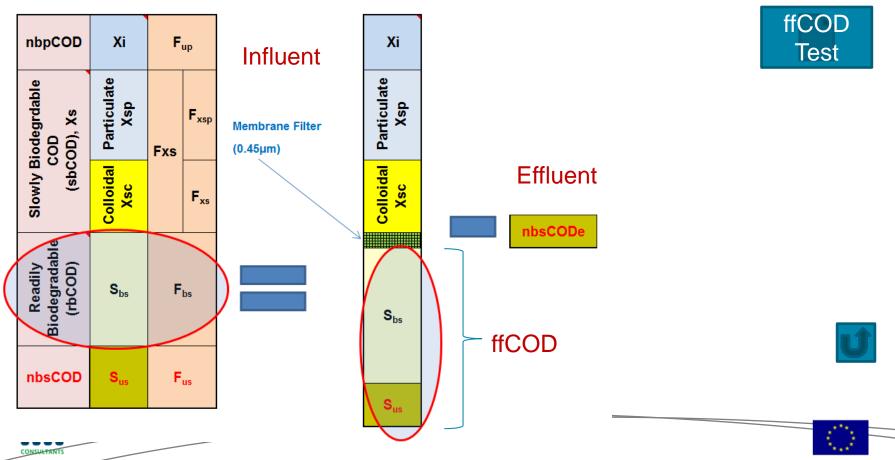


NON-BIODEGRADABLE SOLUBLE COD(nbsCOD,S_{us}) HIGH EFFLUENT BOD

Influent

EXAMPLE nbsCOD HIGH FILTERED EFFLUENT BOD

nbsCOD=100-20*(1500/800)=100-37.5=62.5 mg/l Sus=62.5/1500=4.1%



READILY BIODEGRADABLE rbCOD(S_{bs})

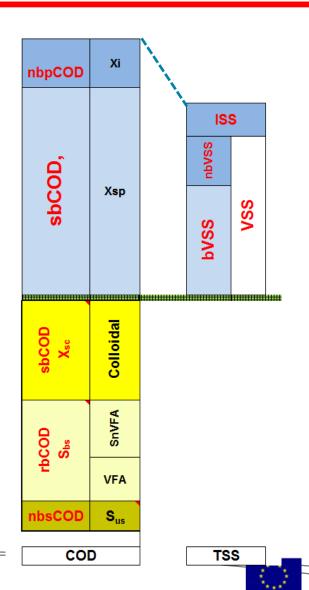
Readily Biodegradable COD rbCOD is measured by the Flocculated & Filtered COD test in the influent and filtered COD in the effluent.

rbCOD=ffCOD influent-nbsCOD effluent

PARTICULATE XCOD/VSS RATIO(F_{cv})

$$F_{cv} = \frac{Particulate_COD}{VSS} = \frac{tCOD - fCOD}{VSS}$$

This is valid for particulate substrate and particulate inert material.


Typical pCOD/VSS ratio is 1.6 g COD/g VSS

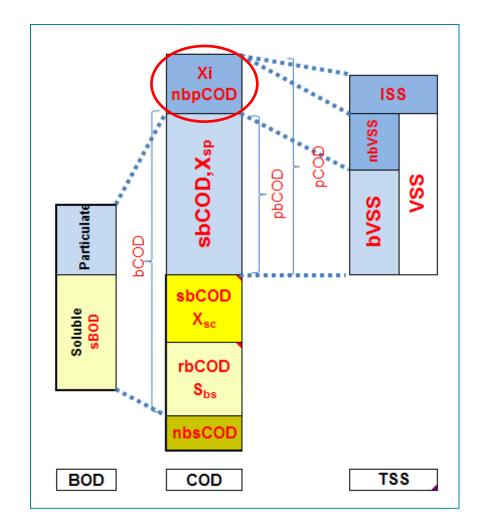
$$\frac{XCOD}{VSS} = 1.6$$

$$VSS = \frac{X_{I} + X_{sp}}{F_{cv}}$$

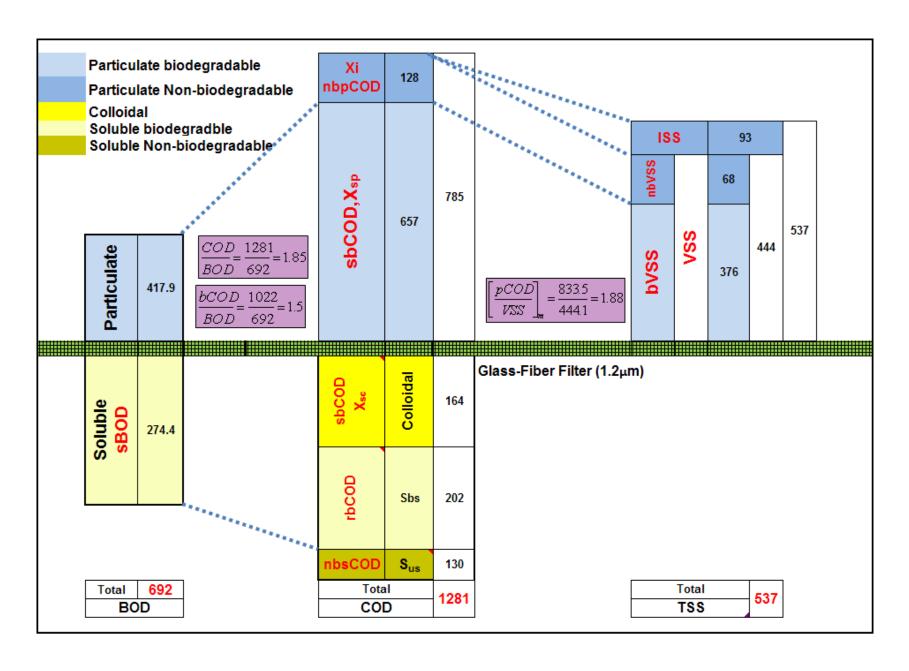
$$TSS = VSS + ISS_{measured}$$

PARTICULATE NON-BIODEGRADABLE(INERT) COD

- Particulate non-biodegradable COD(X_I) is the portion of particulate COD unaffected by biological reactions at the plant and accumulates in the system and collected in sludge mass.
- The magnitude of this fraction is important in the description of activated sludge system behavior, particularly with respect to volatile solids production and oxygen demand.
- The mass of X_i in the system will equal the influent mass per day multiplied by the system sludge age.
- It is important to note that X_i doesn't register as BOD in the influent. Therefore as a result an increasing proportion of X_i will increase the COD/BOD ratio in the influent.


nbpCOD	nbpCOD Xi		up	
Slowly Biodegrdable COD (sbCOD), Xs	Colloidal Particulate Xsc Xsp	Fxs	F _{xsp}	
Slowly Bio C (sbC)	Colloidal Xsc		F _{xs}	
Readily Biodegradable (rbCOD)	S _{bs}	Fı	bs	
nbsCOD	S _{us}	F _{us}		

PARTICULATE NON-BIODEGRADABLE(INERT) COD ESTIMATION FROM COD,BOD5 and VSS


The nbpCOD can be estimated by matching the measured and the calculated COD fractions based on the previously calculated fractions of F_{bs} and F_{us} and the assumed fractions for F_{up} and F_{xsp} .

RELATIONSHIP BETWEEN BOD, COD AND TSS

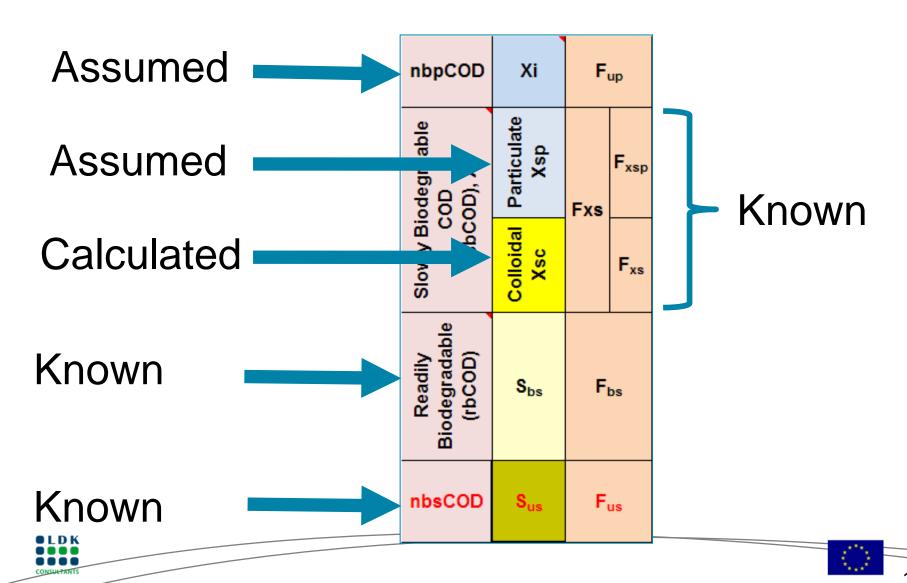
PARTICULATE NON-BIODEGRADABLE(INERT) COD

Calculated COD Fractions

- Assume a value for particulate nonbiodegradable COD fraction. Fup(0.05-0.22)
- Calculate the slowly biodegradable COD fraction , F_{xs}=1-F_{up}-F_{bs}-F_{us}.

$$> X_1 = tCOD^*F_{up}$$

- Assume a value for the particulate biodegradable fraction of the slowly biodegradable COD, F_{xsp} (0-1).
- $X_{sc} = (1-F_{xsp})*Xs$


•
$$X_{sp} = F_{xsp} * Xs$$

• fCOD= $S_{us}+S_{bs}+X_{sc}$

nbpCOD	Xi	F _{up}	
Slowly Biodegrdable COD (sbCOD), Xs	Colloidal Particulate	F _{xsp}	
Slowly Bi C (sbC)	Colloidal Xsc	F _{xs}	
Readily Biodegradable (rbCOD)	S _{bs}	F _{bs}	
nbsCOD	S _{us}	F _{us}	

PARTICULATE NON-BIODEGRADABLE(INERT) COD

CALCULATE BOD FROM COD FRACTIONS

Calculate BOD fractions

$$fBOD = (1 - Y) \times (S_{bs} + X_{sc}) + (1 - f) \times Y \times (S_{bs} + X_{sc}) \times (1 - e^{-5b})$$

$$pBOD = X_{sp} \times \left[\left\{ (1 - Y) + \frac{(1 - f) \times b \times Y}{(b - k)} \right\} \times (1 - e^{-5k}) - \left\{ \frac{(1 - f) \times Y \times k}{(b - k)} \right\} \times (1 - e^{-5b}) \right]$$

tBOD = fBOD + pBOD

Parameter	Definition	Unit	Value
f	Fraction of active mass remaining as endogenous residue		0.2
b	Endogenous decay rate	1/day	0.24
Υ	Yield of active organisms	mg cell COD/ mg COD	0.666
k	First order rate constant for Xsp degradation	1/day	0.4

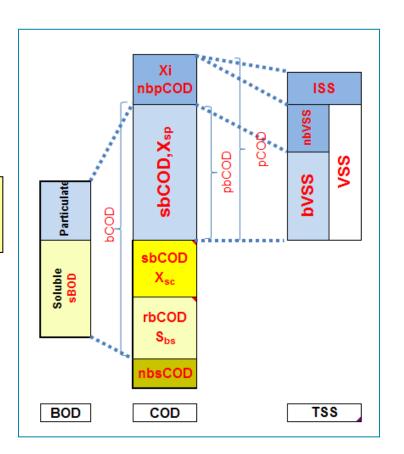
Particulate Xsp

Colloidal Xsc

Sbs

Sus

CALCULATE VSS & TSS

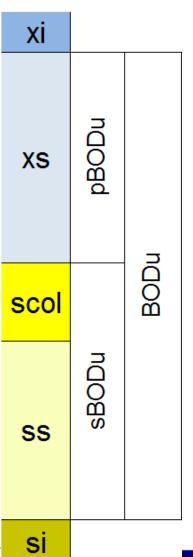

$$F_{cv} = \left[\frac{pCOD}{VSS}\right]_{measured}$$

$$VSS = \frac{pCOD_{calculated}}{F_{cv-mesured}}$$

$$VSS = \frac{X_{I} + X_{sp}(calculated _by _trial \& Error)}{F_{cv}}$$

$$TSS = VSS + ISS_{measured}$$

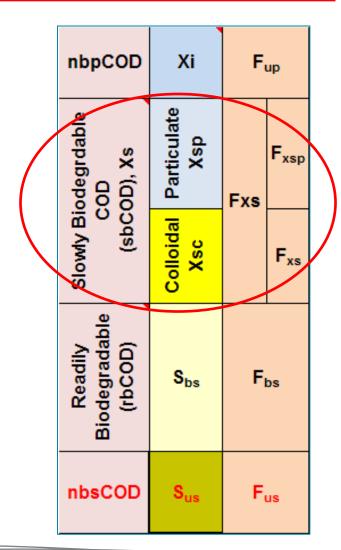
Compare calculated BOD, TSS, and VSS with measured values and accordingly adjust assumptions and recalculate until the best matching is obtained.


BOD ESTIMATION FROM COD FRACTIONS GPS-X METHOD

sBODu = rbCOD

pBODu = bpCOD

BODu = sBODu + pBODu


Estimated BOD = (BOD/BODu)*BODu

SLOWLY BIODEGRADABLE sbCOD

- Slowly biodegradable COD includes both particulate and colloidal COD.
- When colloidal slowly biodegradable material is combined with activated sludge, the colloidal matter is likely adsorbed onto the floc rapidly, and removed from the liquid phase with the sludge. Therefore particulate and colloidal matters are grouped in one category(Slowly biodegradable) which is considered as particulate in separators(secondary clarifiers) downstream of bioreactors.
- The division of sbCOD between particulate and colloidal portions is particularly significant for modeling separation processes prior to activated sludge bioreactors.
- Model predictions of organics removal in a primary settling tank is directly impacted by the colloidal/particulate sbCOD fractionation because the colloidal material is not settleable.

SPREADSHEET FOR FRACTIONS ESTIMATION

Measurements	Value	Unit
Main influent concentrations		
Flow	0.0	mgd or m3/d
Total COD	500.0	mgCOD/L
Total Kjeldahl Nitrogen	40.0	mgN/L
Total P	10.0	mgP/L
Other influent concentrations		
Nitrate N	0.0	mgN/L
pH	7.3	
Alkalinity (CaCO3 equivalent)	300.0	mgCaCO3/L
Calcium	80.0	mg/L
Magnesium	15.0	mg/L
Dissolved oxygen	0.0	mgO2/L
Other measurements		
Effluent filtered COD	26.5	mgCOD/L
Influent filtered COD (GFC)	187.5	mgCOD/L
Influent FF COD	105.0	mgCOD/L
Influent acetate	12.0	mgCOD/L
Influent ammonia	26.4	mgN/L
Influent ortho-phosphate	5.0	mgP/L
Influent carbonaceous BOD5	245.6	mgO2/L
Influent filtered cBOD5 (GFC)	114.7	mgO2/L
Influent VSS	195.4	mgVSS/L
Influent TSS	240.4	mgTSS/L

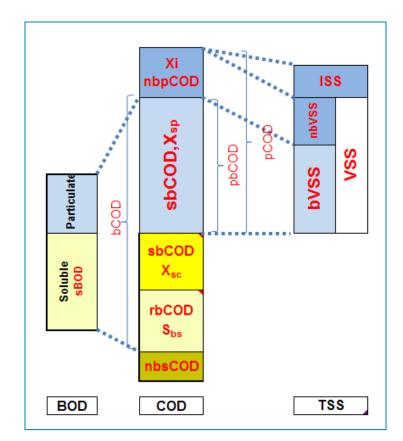
GUIDE

- Enter measured lab data in column on left (BOLD)
 (If data is missing, estimate. May need to repeat after Step 2)
- Check resulting fractions (BOLD)

	Parameter	Value	Unit	Typical range
→	Alkalinity (molar)	kalinity (molar) 6.0 meq/L		2 - 6
→	Fus	0.05	-	0.03 - 0.08
→	CODp	312.5	mgCOD/L	
→	Fbs	0 16 Acetate fra	oction of	0.12 - 0.25
→	Fac	readily bio	degradable ·	0.0 - 0.3
>	Fna	COD (Sbs)	e e	0.5 - 0.8
→	Fpo4	0.50	-	0.3 - 0.6
>	COD/BOD5	2.04		1.9 - 2.2
→	Fcv	1.60	mgCODp/mgVSS	1.5 - 1.7
→	ISS	45.0	mgISS/L	15 - 45

Envirosim Sheet

NON-BIODEGRADABLE VOLATILE SUSPENDED SOLIDS (nbVSS)


Estimated from analysis of COD, sCOD, BOD, sBOD and VSS

$$\frac{nbVSS}{VSS} = \frac{nbpCOD}{pCOD}$$

$$nbVSS = \left[\left(\frac{nbpCOD}{pCOD} \right) \right] \times VSS$$

$$nbVSS = \left[1 - \left(\frac{bpCOD}{pCOD}\right)\right] \times VSS$$

$$\frac{bpCOD}{pCOD} = \frac{\left[\frac{bCOD}{BOD}\right] \times (BOD - sBOD)}{COD - sCOD}$$

bpCOD = Biodegradable particulate COD

pCOD = Particulate COD

sCOD = Soluble COD

Source :M&E Chapter 8 page 672

