SWIM and Horizon 2020 Support Mechanism

Working for a Sustainable Mediterranean, Caring for our Future

SWIM-H2020 SM Regional Activities 14

Presented by:

MOHAMMD SUTARI, MEHSIP RESIDENT EXPERT-JORDAN

SWIM and Horizon 2020 SM REG-14: Refugee Emergency: Fast track project Design of wastewater

26 March 2018, Beirut, Lebanon

This Project is funded by the European Union

WASTEWATER CHEMISTRY & CHARECTERIZATION CONTENTS

- Constituents in Wastewater
- 2. Wastewater Sampling Methods
- 3. Wastewater Characterization
- 4. COD Fractions
- 5. BOD Fractions
- 6. TSS Fractions
- 7. Nitrogen Fractions
- 8. Phosphorus Fractions
- 9. Alkalinity
- 10. Measurement Methods for Wastewater Characterization
- 11. Recommended typical fractions
- 12. Examples for wastewater characterization

ADVANTAGE OF WW CHARECTRIZATION TRAINING

- Understanding of WW analysis reports.
- Assessment of WW quality data.
- Prerequisite for using Simulation Modeling.

BioWin

GPS-X

COD FRACTIONS IN THE BIOREACTOR

3

CONSTITUENTS IN WASTEWATER

DISSOLVED Vs PARTICULATE

Dissolved Solids(S)

 The solids contained in the filtrate that passes through a filter paper with nominal pore size of 2.0 μ m or less(Standard Methods 1988).

Colloidal Matter

- Dissolved solids.
- The size of the colloidal particles in wastewater is typically in the range from 0.01 to 1.2 μm.

Dissolved & Particulate BOD & COD

- The pore size of the filter paper recommended in Standard Methods for differentiating between dissolved and particulate BOD & COD is 1.2 μm.
- Particulate Matter(X)/suspended Solids
 - Material that retained in a filter paper of a certain size.

Particulate

Soluble Dissolved Colloidal

VOLATILE vs INERT SOLIDS

General

If solids are "organic", the material is carbon-based and will burn. "Inorganic" solids, on the other hand, are mineral based and generally will not burn.
 Any material that was at one time living (for example: body wastes, starches, sugars, wood, bacteria and cotton) are all organic while limestone, iron and calcium are inorganic.

Volatile solids(Organic Solids):

 Those solids which are lost during ignition (by burning) for 15-20 minutes at 550 +/-50°C. In general, volatile solids are made up of organic material.

Fixed Solids(Fixed Solids):

 Those solids (total, suspended or dissolved) which remain after ignition for 15-20 minutes at 550 +/-50°C. These are also commonly referred to as ash. In general, fixed solids are made up of inorganic material.

SOLIDS

MEASURMENT OF ORGANIC POLLUTION BIOCHEMICAL OXYGEN DEMAND(BOD)

BOD

- It is defined as the potential for removal of oxygen from wastewater by aerobic heterotrophic bacteria which utilizes organic matter for their metabolism and reproduction.
- The BOD₅ values indicate the amount of biodegradable organic material(carbonacous demand). It may also measure the oxygen used to oxidize nitrogen, unless their oxidation is prevented by inhibitor.

ULTIMATE BOD CARBONACOUS BOD(cBOD)

uBOD

- o BOD test are typically conducted over 5 days; UBOD can go on for weeks
 - it's until the rate of oxygen utilization by organisms is zero.

Rule of thumb

$$\frac{BOD_5}{uBOD} = 0.68$$

$$\frac{uBOD}{BOD_5} = 1.47$$

MEASURMENT OF ORGANIC POLLUTION COD

COD

 COD evaluates everything that is oxidizable – either biologically or chemically. dichromate in an acid solution is usually used for oxidation.

For conversion between BOD & COD, it is sometimes assumed that ultimate BOD is equal to COD. Because not all of the COD is biodegradable, uBOD is actually less than COD.

WASTEWATER SAMPLING METHODS

Grab Sampling

- Given instantaneously a volume of wastewater in one spot.
- Automatic Sampling
 - Full Sequential Sampling Mode
 - Sampling at regular time interval of a given volume collected in one flask. After one sample, the system moves to fill the next flask.
 - Composite Sequential Sampling Mode
 - Samples are collected at regular intervals in one large flask for a single composite sample or in several flasks for hourly or bi-hourly composite samples.
 - Good for higher sampling frequency.
 - Integrated Sampling Mode
 - Good if Knowledge of daily load is required.
 - The volume of sample is proportional to the flow.

WASTEWATER CHARACTERIZATION

- Aim is to determine typical wastewater fractions relationship between various constituents.
- Flow and concentration vary with time, but the fractions and relationships can be assumed to remain constant.
- Most critical step in process design.
- Important in evaluation existing WWTPs

Wastewater Characteristics Categories:

- Carbonaceous Substrate (BOD,COD).
- Nitrogen Compounds.
- Phosphorus Compounds
- Total & Volatile Suspended Solids.
- Alkalinity

DEFINITION OF TERMS USED TO CHARCTERIZE BOD,COD,N,SS,& P

Parameter		Definition	Fraction Name	Parameter		Definition	Fraction Name	
BOD			Nitrogen					
BOD	tBOD	Total 5-d biochemical oxygen demand			TKN	Total Kjeldahl nitrogen		
sBOD	fBOD	Soluble BOD			NH3	Ammonia	Fna	
uBOD		Ultimate BOD			bTKN	Biodegradable TKN		
COD	COD				sTKN	Soluble TKN		
COD	tCOD	Total chemical oxygen demand			ON	Organic nitrogen		
bCOD		Biodegradable COD			bON	Biodegradable organic nitrogen		
pCOD		Particulate COD		1	nbON	Non-biodegrdable organic nitrogen		
sCOD	fCOD	Soluble COD		1	pON	particulate organic nitrogen	Fnox	
nbCOD		Non-biodegradable COD			nbpON	Non-biodegradable particulate organic nitrogen		
rbCOD	Sbs	Readily biodegradable COD	Fbs	1	sON	Soluble organic nitrogen		
bsCOD		biodegradable soluble COD		1	bsON	Biodegradable soluble organic nitrogen		
sbCOD	Xs	Slowly biodegradable COD	Fxs	1	nbsON	Non-biodegradable soluble organic nitrogen	Fnus	
csbCOE	Xsc	Colloidal slowly biodegradable COD	Fxc	Susp	Suspended solids		'	
psbCO[Xsp	Particulate slowly biodegradable COD	Fxsp		TSS	Total suspended solids		
bpCOD		Biodegradable Particulate COD		1	VSS	Volatile suspended solids		
nbpCOI	Xi	Non-biodegradable particulate	Fup	1	bVSS	Biodegradable VSS		
nbsCOI	Sus	Non-biodegradable soluble COD	Fus	1	nbVSS	Non-biodegradable VSS		
ffCOD		Floculated & filtered COD		1	iTSS	Inert total suspended solids		
P:COD & N	P:COD & N:COD ratios				Phosphorus			
	nbpON:nbpCOD FupN				TP	Total Phosphorus		
	NbpP:nbpCOD FupP				PO4	Orthophosphate	Fpo4	

PRIMARY SEDIMENTATION TANK(PST) MASS BALANCE & CHARECTERIZATION

TSS removal= 60%

Q=	10000	m3/day
Item	Conc.	Load
iteiii	mg/l	Kg/day
COD	670	6,700
BOD	353	3,530
TKN	75	750
TP	18	180
VSS	206	2,060
TSS	234	2,340

	Q=	100		
Itom		Conc.	Load	0/ Domoval
Item		mg/l	Kg/day	% Removal
COD				
BOD				
TKN				
TP				
VSS	·			
TSS		14,040	1,404	60.0%

REQUIRED WASTEWATER ANALYSIS FOR CHARECTERIZATION

No.	Parameter	Influent	Effluent	
1	Total COD	COD	٧	٧
2	Filtered COD(1.2 um glass fiber filter)	sCOD	٧	٧
3	Flocculated & filteredCOD(0.45 um filter)	ffCOD	٧	
4	BOD ₅	BOD ₅	٧	٧
5	Filtered BOD ₅ (1.2 um glass fiber filter)	sBOD ₅	٧	٧
6	Total Suspended Solids	TSS	٧	٧
7	Volatile Suspended Solids	VSS	٧	
8	Total Phosphurus	TP	٧	
9	Orthophosphate	PO4	٧	٧
10	Total Kjeldhal Nitrogen	TKN	٧	٧
11	Filtered TKN	fTKN	٧	٧
12	Ammonia	NH ₃	٧	٧
13	Nitrate	NO ₃		√
14	Nitrite	NO ₂		٧
15	Alkalinity as CaCO3		٧	

STATE & COMPOSITE VARIABLES

- State Variables, basic wastewater components:
 - ☐ Soluble(S), rbCOD, Ammonia-N, PO4-P..etc.
 - □ Particulate(X), pBOD,pCOD,pN.
- Composite variables, combination of several state variables, BOD,COD,TSS,TKN,TP.

COD FRACTIONS

BOD FRACTIONS

TSS FRACTIONS

NITROGEN FRACTIONS

TOTAL PHOSPHORUS(TP) FRACTIONS

Phosphorus in wastewater is one of three forms

- a) Phosphate(Orthophosphate)
- b) Polyphosphate
- c) Organic phosphorus

CONSULTANTS

ALKALINITY

- Alkalinity is a measure of the capacity of water to neutralize acids. It measures the presence of CO2, bicarbonate, carbonate and hydroxide ions that are naturally present in water.
- The pH is a measure of how acidic or basic is the wastewater. It is related to the hydrogen ions in wastewater.
- Adequate alkalinity is needed to achieve complete nitrification

