WHAT IS UV DISINFECTION

- Ultraviolet light(UV) destroys bacteria and viruses by altering DNA.
- Natural, non-chemical method of treatment

HOW DOES UV DISINFECT

- UV light penetrates and permanently alters the DNA of the microorganisms in a process called thymine dimerization.
- The microorganisms are "inactivated" and rendered unab;e to reproduce or infects.

UV DOSE CALCULATIONS

UV Dose is a product of:

Intensity (quantity of UV light per unit area falling on a surface) and Residence Time (contact time in the reaction chamber)

UV DOSE UNITS

UV Dose is expressed in:

- Milli-Jouls/square centimeter(mJ/cm2)
- Micro-Watt seconds/square centimeter (µWsec/cm²)

 $40 \text{ mJ/cm}^2 = 40,000 \text{ (}\mu\text{Wsec/cm}^2\text{)}$

UV DISINFECTION DOSE REQUIREMENTS

Average UV Dose Required for Inactivation (mJ/cm²)

	(90%)	(99%)	(99.9%)	(99.99%)
Pathogen	1-Log	2-Log	3-Log	4-Log
Cryptosporidium parvum oocysts	1.3	2.5	4.3	5.7
Giardia lamblia cysts	0.3	0.7	1.3	1.7
Vibrio cholerae	0.8	1.4	2.2	2.9
Shigella dysenteriae	0.5	1.2	2	3
Escherichia coli 0 157:H7	1.5	2.8	4.1	5.6
Salmonella typhi	1.8 - 2.7	4.1 - 4.8	5.5 - 6.4	7.1 - 8.2
Shigella sonnei	3.2	4.9	6.5	8.2
Salmonella enteritidis	5	7	9	10
Hepatitis A virus	4.1 - 5.5	8.2 - 13.7	12.3 - 22	16.4 - 29.6
Poliovirus Type 1	4.1 - 6	8.7 - 14	14.2 - 23	21.5 - 30
Coxsackie B5 virus	6.9	13.7	20.6	30
Rotavirus SA 11	7.1 - 9.1	14.8 - 19	23 - 25	36

FACTORS EFFECTING UV DOSE

- Flow Rate
- Ultraviolet Transmittance
- Water Quality
 - Hardness
 - Iron
- Suspended Solids

UV DOSE vs FLOW RATE

Flow Rate

The flow rate affects the residence time of the water.

Fast Flow = Low Dose

Slow Flow = High Dose

UV DOSE vs UV TRANSMITTANCE(UVT)

UV Transmittance (UVT)

UVT is a measure of how well the water is able to transmit UV light (water clarity). It affects the intensity of light reaching pathogens.

High UVT = High Dose

Low UVT = Low Dose

Less UV light getting through the water

CHLORINATION SYSTEM SCHEMATIC

CHLORINE SYSTEM SIZING

CHLORINE DISINFECTION CALCULATOR		
Average Flow	m3/day	9,500
Peak Flow	m3/day	38,000
Retention time in contact tank @ Peak Flow	minutes	30
Total Volume of Chlorine Contact Tank	m3	792
No. of Tanks		2
Volume each Tank	m3	396
Water Depth	m	4
Area Each Tank	m2	99
Calculated Retention time @ Qav both units in operation	minutes	120
Calculated Retention time @ Qav one unit in operation	minutes	60
Assumed Chlorine Dose @Qav	mg/l	8
Chlorine Consumption @ Qav	Kg/h	3
Assumed Chlorine Dose @ Peak Flow	mg/l	8
Chlorine Consumption @ Peak Flow	Kg/h	13
Capacity of one chlorine drum	Kg	860
Required no. of drums per month @ Average Flow		2.7
No. of duty chlorinators		1
No. of standby chlorinators		1
Maximum Capacity each chlorinator	Kg Cl2/h	13
Minimum Capacity each chlorinator	Kg Cl2/h	0.6

